합성함수 인식부터 치환적분까지
게시글 주소: https://w.orbi.kr/00069306012
문제 같이 읽어보겠습니다.
뭔가 그림 그리고 싶다는 생각이 듭니다.
이 정도로 그리면 되겠습니다. 노란색 동그라미 친 건 미분계수입니다.
문제를 마저 읽어볼게요
아, f(x)가 아니라 f(2x)래요. 그것도 그려줍시다.
x=1에서 미분계수가 2인거 바로 보이시나요?
이쯤에서 잠깐 딴 얘기로 샜다가 돌아오겠습니다.
(딴 얘기)___________________________________________________________________________________
이건 cos함수에 5x를 합성한 함수입니다.
5x는 x보다 다섯배 빠르게 진행되기 때문에,
cos5x 함수는 cosx 함수에 비해 모든 대응되는 구간에서 다섯배 빠르게 변합니다.
미분계수가 다섯배인 셈이죠.
또 다섯배 빠른 진행속도 덕분에, 함수는 다섯배 축소됩니다.
(딴 얘기 끝)________________________________________________________________________________
이런 이유로, 앞선 문제에서
이렇게 그릴 수 있던 겁니다.
이제 문제 마지막 부분 읽어볼게요.
음.. 이건
f(2x)의 그림만 보고 a는 1이고 b는 1/2이라고 읽으면 됩니다.
긴 설명 대신 그림 2개면 충분할 겁니다.
함수 그림은 냅두고
x, y 축만 샥 바꿔주면 됩니다.
우리가 잘 알고 있는
이 사실을 수식적으로 이해해도 좋지만,
저는 때에 따라 조금 더 기하적인 느낌으로 이해합니다.
이렇게 말입니다.
앞선 예시도 이런거였죠.
하지만 이 얘기는 f(x)와 f(3x)처럼 단순히 일차함수를 합성했을 때만 쓸 수 있는 얘기가 아닙니다.
다음 문제로 넘어가봅시다.
지수함수 f(x)에 대해 다음 값을 구해야 하는 상황입니다.
가독성을 위해 엄밀하게 적지는 않았지만 다 이해하셨을거라 생각합니다.
일단 절댓값 f(x)부터 그려봅니다.
-1에서 미불이고, 이때 오른쪽 미분계수는 ln2입니다.
이제 어떤 빨간 점이 이 곡선경로를 쭉 따라간다고 해봅시다.
이 빨간점은 y=x세제곱 함수의 속도로 곡선경로 위를 움직이는 중입니다.
y=-1일 때, x세제곱 함수의 미분계수는 3입니다.
따라서
여기 -1 부근에서 빨간점은 경로를 3의 속도로 지나가는 중입니다.
아까 문제에서 h'(a+) 구하라고 했었죠.
3의 속도로 기울기 ln2인 구간을 지나는 중이니까 답은 3ln2입니다.
근데 삼차함수에다가 대고 막... 속도 개념을 부여해도 되는걸까요?
또 잠깐 딴 얘기로 샜다가 올게요.
(딴 얘기22)___________________________________________________________________________________
아까 cos 5x는 진행속도가 일정한 경우였습니다.
그런데 진행속도가 일정하지 않을수도 있습니다.
(예전에 제가 썼던 칼럼 일부를 인용해왔습니다)
앞서 언급했던
이 사실이 이러한 이유로
이렇게 인식될 수 있는 겁니다.
시간 있으신 분들은 아래 기출 문제 풀어보세요.
귀찮으면 넘어가시구요
답은 19+20= 39입니다.
알려드린 걸 통해 풀면 인식하기가 훨씬 쉬울겁니다.
(딴 얘기 끝)________________________________________________________________________________
아직 할 얘기가 많이 남아있습니다.
합성함수 인식은 결국 치환적분의 얘기로 이어집니다.
다만 이번편에 다 쓰면 너무 길 거 같아서, 다음 편으로 넘길게요.
좋아요랑 팔로우 누르고 기다려주시면 곧 돌아오겠습니다 ㅎㅎ
0 XDK (+10)
-
10
-
내신망해서 내신다시만들고싶은데
-
맘만 먹으면 누구나 성별전환 가능한 사회에서 여성욕하는건 어불상설 욕할시간에 여자가...
-
낮공 상관 없이 최대한 어디까지 갈 수 있을까요?
-
⭐ https://forms.gle/hNQQ4e2kbGftj49x9 다름이 아니라...
-
학과 분위기 취업 수업내용 난도 등
-
ㅇㅇ?
-
25수능 패스랑 26패스 둘 다 샀는데 기존에 듣던 강의가 내려갔길래 문의해서 수강...
-
07인데 뭐 입시자료부터 인강 다 모르겠어요.. 인강 커리는 언제부터 뜨는지도 모르겠고요..
-
ㅇㅇ 폰중독자임
-
물부으면 물이 스르륵 사라지고 동전이 물티슈로 변신해요 나만 신기해?
-
학원 드디어 퇴사 18
너무 힘들었다 진짜.. 지방이라 잘하는 친구도 몇 없고 수상수하수1수2미적확통...
-
다들 문디컬 갈 거면 언매 미적 해야한다던데
-
여혐생길것같다 4
못생긴애가 지 잘난줄 알고 나대면 여혐생긴다
-
롤체 다1찍었다 0
마스터 가보자
-
고1 내신 원하는대로 나올때까지 재도전 하는게 의대 정시 재수 삼수 하는것보다 훨씬 나아보임
-
6평때 메가가 미적 84로 잡았는데 실채 80이었다는거임 항상 실채점 컷이 업체...
-
어뜨카냐 진짜 하..
-
나가기 귀찮다 10
사실 지금도 약속시간 늦음
-
BL or 백합임 수정 일본
-
서성한 내려치기해서 미안하다 훌리들아
-
어디가 더 나은 선택지임? 목표는 높2업 화1 20번 남기고 3분 남았는데 각이...
-
어차피 삼수이상 할거면 고등학교 다시 다니는게 낫지 않음? 4
의대 수시 비율보면 아무리봐도 그게 더 나아보이긴함
-
왜냐면 교수님들도 포기하신거지 ㅋㅋ
-
키잉이이
-
Iq 검사 결과 12
하나만 왕 높은 듯하다..
-
김범준 정병호 0
1 김범준 현강 공통 가는데 기출 다루나요?? 2 정병호 미적 현강 가는데 뉴런이랑...
-
의대지망인데 정시 노리는거 자체가 이미 늦은거 아님? 0
수능 3등급 받아놓고 의대 합격한 수시충들이 이와중에도 조용히 의뱃달고 꿀빠는거 보면 좀 역겹긴 함
-
예비 고3 수학 1
고2 모고 풀면 1~18 22~27 까지는 푸는데 19는 손을 좀 대도 20 21...
-
과외를 전업으로 하는 거에 대해 어떻게 생각하시나요? 25
다양한 의견을 들어보고 싶어서 질문 남깁니다 물론 안정성 면에서 과외를 전업으로 할...
-
ㅠㅠ
-
메디컬 과1사1이면 지원 자체는 다 할 수 있는 건가요? 0
진짜 몰라서 하는 말임뇨 사2랑 똑같나요?
-
수능 당일 패스 판매량 최대 ㄷㄷㄷㄷ
-
걍 ㅈㄴ 스트레스 받어 하…..
-
메디컬,계약학과 제외 입결이 가장 높은과가 어디인가요??
-
심심하다 0
ㅇ ㅠ ㅇ...
-
한화가 제바딜을 들고 40분동안 이어가고 있는거보면 그래도 나름 잘 버티는것 같다
-
* 자세한 문의는 아래의 링크를 통해 연락 바랍니다....
-
의대가고싶으면 선택과목 결정보다, 인강 추천같은거보다, 수시나 지역인재 찔러넣기...
-
여르비 분들 14
남자 키 164-5에 모든 게 평범하면 이성으로 죽어도 안 보임?
-
감복구 어케할까요 한달전에 기출 까다로운4점도 꽤...
-
왜이렇게 질질 끌리냐
-
이감오프랑 매월승리 현역이 병행하기엔 힘들까요? 국어가 많이 약해서 올리고싶어요...
-
중세국어부터 썼음
-
??:n일만에 사문 고정1인데~ 볼 때마다 대가리에 포크를 꼽고 싶었음
-
현역들한테유리한거일수도있음
-
개불안함 ㅈㅉ로
-
이런 류의 글은 처음인데 저도 언제꺼지나 수험생 커뮤에서 똥글만 싸는게 아니라 뭔가...
-
수분감 수2 끝냈고 스텝1에서 2~3개씩 못푸는거 잇음뇨 뉴런 나올때까지...
-
공대도 여자교수 비율 높여야하는데 국공립대에서 교수할만한 여자가 없어서 대충 아무나 다 교수되는중
오 cos2x 같은 일차항의 계수만 달라져서 합성된 상황만 x축 방향 축소로? 알고 있었는데
이차함수같은 게 합성되어 있어도 되는 느낌이네요
특정한 한 지점에서는 이차함수도 지수함수도 직선으로 근사할 수 있기 때문이라고 생각해도 되겠습니다
무민은좋아요
라끄리식수학적사고ㄷㄷ
https://orbi.kr/00064989284
그동안 쓴 칼럼 리스트입니다. 필요하신 분들 참고하세요
진짜 좋은 칼럼
우와...
식으로 파악하던걸 가시화해주네요
간단하보이지만 누군가 이런걸 정리해주지 않으면 써먹기 쫄리던데 감사합니다!
신기방귀
f(x)를 g'(x)의 속도로 지나가고 있다고 해야 맞을듯
g(x)의 속도 (=g’(x) )로 지나간다는 의미였습니다.
저도 둘 중에 뭘 쓸까 고민했어요
말씀해주신 것처럼
g’(x) 의 속도라 해야 와닿는 거 같기도 하네요
좋은 지적 감사합니다 ㅎㅎ
그러면 "g(x)와 같은 속도“는 어떤가요?
합성함수기울기=각위치 겉속 기울기의 곱
엔축공부하면서 떠올렸던 건데
속도개념으로 볼수도있군요!
goat...
와 제가 이해한방식이랑 거의 유사합니다
정돈된 버전?
남들한테 퍼지는게 아까운 수준의 글이네요
딴얘기, 딴얘기 끝이라고 표현해놓은게 왜이리 귀엽게 보이지ㅋㅋ 잘봤습니다
저 다 봤어요 이제 내려주세요
개추
좋은칼럼 잘보고갑니당