y=|x|는 왜 x=0에서 미분 불가능할까? & 유리화는 왜하는걸까?
게시글 주소: https://w.orbi.kr/00011115763
안녕하세요. 일반청의미입니다.
이 칼럼은 이 글에 담긴 생각을 바탕으로 쓰게 되었습니다.
공부의 양은 어떻게 정할까? : http://orbi.kr/0008692499
공부의 양은 생각의 양과 같고, 생각과 고민은 질문에서 나옵니다!
공신 방송 다녀온 후기 & 수학 칼럼 연재합니다. http://orbi.kr/00010768917
가장 쉬운 방식으로 개념을 이해해야해요 : http://orbi.kr/00010794675
이차방정식의 해법 해설 + 평행이동할때 왜 점은 +a인데 그래프는 -a일까? : http://orbi.kr/00010789384
평행이동 해설 & 어떻게 곡선 위의 점의 접선은 한 점으로 정의될까? : http://orbi.kr/00010841663
저번주의 칼럼은 바로 이거였어요!
곡선 위의 점의 접선 해설 & y=|x|는 왜 x=0에서 미분 불가능할까? : http://orbi.kr/00010980265
정답갑니당.
A : y=0 말고 y=1/2x도 접선, y=-1/2x도 접선…. 그러면 접선이 매우 많아지죠.
원점을 지나고 기울기가 -1에서 1 사이인 직선 모두가 접선이 됩니다.
모두가 원점을 스치면서 지나가니까요
접선의 정확한 정의는 미분계수를 기울기로 갖는 직선입니다.
미분계수는 그래프 위 두 점 사이의 기울기의 극한이며, 접선의 정확한 정의는 할선의 극한입니다.
할선의 극한이라는 말이 애매하지만, 극한의 정의로 미루어보면 극한값이 존재하려면, 좌극한과 우극한이 같은 값으로 수렴해야 합니다.
직선으로 확장시켜보면, 좌측에서 가까워져 가는 할선과 우측에서 가까워지는 할선의 극한 모두 한 직선으로 일치해야 합니다.
이렇게요!
좌극한과 우극한이 다르면 극한의 정의에 의해 어떤 것에 가까워진다고 단정짓기 애매하니까요! 그 사이 어떤 값을 택해야할지 애매한 것입니다.
우리는 한점에서 직선을 그을 수 없습니다. 하지만 접선은 그을 수 있게 된 이유는 극한을 통해 그 직선을 정확하게 하나로 결정할 수 있었기 때문입니다. 결정할 수 없다면? 당연히 한점에서 직선을 그을 수 없으니, 접선이 정해지지 않겠죠! 보통 뾰족점에서 접선이 무한히 많이 생깁니다. 이것을 첨점이라 하며, 그 점에서 함수는 미분 불가능합니다.
x값에 그 값에서의 미분계수가 y값이 되어 대응되는 함수를 도함수라 합니다.
도함수도 함수입니다! 즉 x값 하나에 y값 하나가 대응되어야하며, 도함수가 존재하려면 원함수가 정의되는 곳에서 모두 미분 가능해야 합니다.
접선이 많으면, 대응되는 접선의 기울기가 1개 이상이기 때문입니다.
Q : 그렇다면 왜 y=|f(x)|에 미분 불가능한 점이 생길 가능성이 있을까요?
절댓값의 정의는 수직선 위의 원점에서 어떤 점까지의 거리입니다. 항상 양수에요.
절댓값 기호 안의 값이 음수일 때는 마이너스가 붙어서 양수가 됩니다.
절댓값 기호 안의 값이 양수일 때는 f(x), 절댓값 기호 안의 값이 음수일때는 –f(x).
즉, 함숫값의 부호가 바뀔 때 함수또한 바뀐다는 것입니다!
서로 다른 함수 y=f(x)와 y=–f(x)가 이어져 있습니다. f(x)가 모든 실수에서 미분가능한 함수라 하더라도 y=f(x)와는 다른 함수 y=-f(x) 두개가 이어져있을때 미분 가능한지는 알 수 없습니다.
즉 함수가 바뀌는 부분에서 미분가능한지를 조사해야합니다.
함수가 바뀌는 부분이 어디인지에 주목하면 미분가능성 문제를 수월하게 풀 수 있습니다.
1. f(x)와 에 절댓값이 붙어있다. 이 절댓값 함수는 어디에서 바뀔까?
2. f(x)는 x=-1에서 함수가 바뀐다. 그러면 이것을 기준으로 나눠주면 될거야.
3. 는 어디에서 함수가 바뀔까?
……………….
이런 식으로 문제풀이가 진행됩니다.
1. g(x)가 절댓값이 두개 붙어있다. g(x)는 x에 따라 함수식이 바뀔거야.
2. 바깥의 절댓값을 생각하기엔 안의 절댓값 때문에 정확하게 알 수가 없다.
3. 일단 맨 안쪽의 절댓값부터 생각해보자. X=0 좌우에서 함수가 바뀔거야.
4. X=0 주변에서는 함숫값이 1 근처일거야. 그 주변에서는 항상 양수일거야.
5. 함수가 바뀌는데 어떻게 미분가능할 수 있을까?
6. X가 0이상에서는 함수가 언제 바뀔까?
7. 함수가 바뀌는데 어떻게 미분가능할 수 있을까?
사실 문제를 풀 때, 계산을 전혀 할 수 없어서 문제를 못푸는 경우보다는
문제를 풀기위한 아이디어가 부족해서 못푸는 경우가 많습니다.
그러므로 그 아이디어를 계속 고민해야하며, 그 근거는 개념에 있습니다.
사실 많은 분들이 예견해주신듯 합니다..ㅋㅋㅋ
요약하자면, 극한값은 좌극한과 우극한이 일치해야 존재합니다.
일치하지 않으면, 그 사이의 어떤 값으로 가까워지는가를 설명하기 힘들기 때문입니다.
그러면 다음주제를 소개해볼게요
유리화는 왜 하는걸까?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
가 찾아온 쇼메이커 같은 라이너는 대회에 나가면 적이라서 친해질수 없다고 해놓고...
-
ot나 새터 언제 하는지 알고계신분 있으신가요?
-
많이 허무하려나
-
숭실>아주>국민 4
순서인가보네여 과바과도 있겠지만 전반적으로 인식이
-
진짜 ㅈㄴ비싸네 아니 이 듣보잡 포켓몬이 왜 비싼거야 시발
-
서강대 합격생을 위한 노크선배 꿀팁 [서강대 25][새내기 OR] 0
대학커뮤니티 노크에서 선발한 서강대 선배가 오르비에 있는 예비 서강대생, 서대...
-
재수하게되
-
님들 공스타는 3
공계로 하죠? 예전에 시험준비한다고 글올렸던건 기록용이라 비계로 했는데 걍 공계로 할까
-
ㄹㅇ 뱃지달려고 입시한건데
-
너무 행보케~~~
-
영어 낮은 등급에서 올리신 분들이나 항상 등급 높으신 분들이나 다들 단어 외울 때...
-
닉변 추천 좀 12
1. 억울한 캬루 2. 저능한 캬루 3. 캬루룽 그리고 덕코도 불우이웃 돕는다고...
-
보닌 썰 1
초딩 3학년때 왕따당함 사회의 쓴맛 조기교육 ㅁㅌㅊ?
-
연대 언더우드 생명과학공학 (1년 송도 3년 신촌) VS 서성한 화학과 영어는 문제...
-
그보다 푸딩 주제에 ㅈㄴ 비싸네 :) 먹어봐야징
-
합리적선택만을할수없음을알자
-
ㅈㄱㄴ 금액은 총 만원
-
야 기분좋다~ 1
기붕좋다
-
왜들 진작에 안하셨나요? 오르비 대다수가 사탐런 하라고 말씀하시는데 진짜 믿어도...
-
방어 잘했다
-
저는 거의 프듀 때 김채원 코임
-
저 노베로 물리시작하는데 비가너 꼭해야하나요? 사긴샀는데 펀더멘탈에 다있는...
-
점공으로 들어오십시오!!!!! 제발
-
둘 다 붙으면
-
불안하지 않으신가요.. 점공 자체도 적은데 점수대도 생각보다 높아보이네요 ㅠ 아직...
-
본인이 자꾸 장작을 넣어주니까 더 궁금함 이번 라인CK에서는 번따 되려나
-
말을 뭐라고 꺼내야하지…
-
과 절대 안 밝힌다 14
바로 특정이다
-
올해 추합률 낮아진다는 얘기가 있어서
-
해보려고해는데
-
대충 얼마나 되나요?
-
그...내가 특정을 절대 당하면 안됨 방구석특정은 벌써 3번이나해봄 추정상...
-
컷 예측좀여….
-
전기전자 물리 0
원래 자전가서 전전 갈라 했는데 물리를 뒤지게 못하는데 그냥 소프트웨어계열로 갈까요...
-
옯만추 할사람 7
찾아오시면 됩니다~
-
인맥, 학연지연 말고요 대부분 알바몬 같은데서 구하나요..?
-
팔로우 하실 분 있음? 없으면말고
-
재수 삘이라 수능갤에 엄마아빠미안해라고 글썼었어요 그리고는 재슈를 했죠
-
옯만추후기 1
-
막 무슨 깔끔한 앱같은 걸로 보는 사함들은 뭐쓰는거에요? 워드같은거 말고
-
연경 or 상지한 14
아닥하고 상지한일까요?? 영어 실력 좋은 미국출생(이중국적) 남학생입니다,, 인생이...
-
근데 했으면 5수 이상 박았을듯 의지박약이라
-
30% 들어오고 어제부터 안들어옴 하 이러면 내가 더 밀려날거라는 거잖아 ㅅㅂ ㅜㅜㅜ
-
수능때만 국어를 못쳐서 이게 좀 그럼… 고1부터 재수때까지 4년간 모든 모고 1인데...
-
지금 시발점 부록에있는 고1수학부터 하는중인데 둘 중 뭐가 더 좋은가요? 아이디어...
-
하..
-
둘다붙을거같은데 어디가는게나을까요?
-
3합 가능할까요...
-
안듣고있다고요? 들으세요
-
재판관 6명 이상이 찬성해야 탄핵되는데 보수적인 재판관 6명 이상이 찬성 한다는게...
Lim (a-b)와 같은 형태에서 a,b 둘다 발산하는 형태이면 극한의 연산과 관련된 형태를 사용할 수 없기 때문에 유리화를 통해 극한의 연산 법칙을 적용 가능한 형태로 바꿔주는것 아닌가요...? 그나저나 일반청의미님 글이 모아보기에서 계속 안보여욤 ㅠㅠ
그래도 lim c/d 에서 c, d 둘다 발산하는 형태일걸요!
사실 lim (x-1)/(x-2)같은거에서 최고차항 지수/계수비교하는게 일상화되어서 놓칠수 있는 부분이지만 x값이 임의의 상수값이 아닌 무한대로 발산했을때의 극한의 경우 lim1/x=0과 같은 몇개의 공리를 적용할 수 있는 형태로 변형한다 (ex.x-1/x-2를 (1-(1/x))/(1-2/x))와 같은 형태로 )뭐 그렇게 배웠던 기억이 나서욤! 유리화도 비슷한 맥락으로 이해했던것같은...
넹 더 자세하게 설명해주면 되십니당.
또한 분모의 유리화는 왜 하는지도 생각해주시면 좋아요.
유익한정보 고맙습니다~~ 이런글은 닥팔이야! ^,^