(스압) 평가원은 공간도형문제를 어떻게 만들었나?
게시글 주소: https://w.orbi.kr/00014674655
정사영이 처음나왔을때 수학을 연구하던사람들은 다양한 도형을 정사영 시켜봤을거에요.
직선,삼각형,사각형,오각형같은 평면도형도 정사영시켜보고 구,원뿔,원기둥,정사면체,직육면체,구의 단면과 같은
공간도형도 정사영을 시켜봤겠죠. 별의별 도형을 다 정사영시켜봤겠죠?
그중에서 원기둥을 예로들어보죠.
그림속의 원기둥을 수학의 원기둥으로 생각하지마시고
아래그림처럼 현실에 존재하는 어떤 원통형의 통으로 생각해보세요.
이러한 원통을 정사영시킬건데요. 이 원통을 위의 그림처럼
지표면과 30° 의 각을 이루도록 놓은다음에 아래로 정사영시키면
넓이가 하나로 정해질까여 안정해질까요?
현실세계에 존재하는 원통은 당연히 밑면의 반지름의 길이도 하나로 뭔가 정해져있을거고
높이도 하나로 정해져있을거잖아요? 물론 그값이 자연수처럼 깔끔한값이 아니라 근사값으로
나타날것이고 흠집이나거나 움푹페인곳은 미세하게 다를수있기때문에 수학처럼 완벽하진 않겠죠.
하지만 대략적으로 밑면의 반지름과 높이등등 모든 물리적인 상태가 이미 하나로 결정되있는 상태기때문에
각도만 정해준다면 그림자의 넓이는 반드시 뭔가 하나로 결정될거에요. 예를들어서, 밑면의 지름이 4이고
높이가 10이고 원기둥과 지표면이 이루는각이 30° 라했을때 정사영의 넓이는 분명 어떻게든 구해질거에요.
아래그림과 같이 구하면돼요.
이런식으로 수학자들은 아주 많은 도형에 대해서 특정한각도 30° ,45° ,60°,20° 등등을 정한다음에
정사영의 넓이를 구하는 시도를 아주 많이 해봤을거에요. 이런식으로 원기둥의 반지름과 높이,각도를
바꿔가면서 수없이 많은 시도를 하다보면
2011학년도 수능 11번문제처럼 정사영이 아래원판의 중심을 관통하는 경우도 나오게 되는거죠.
그렇다면 당연히 이런 삼각형도 정사영 시켜봤겠죠?
제가 방금 설명드렸듯이, 어떤 대상을 정사영시킬때는
그 대상의 모든 물리적인 상태를 하나로 정해야된다고 했잖아요? 그래야 그림자의 넓이가 하나로 정해지니깐요.
그렇다면 삼각형을 세상에 단하나밖에없는 삼각형으로 만들어야겠죠? 그러기위해선
삼각형의 세변의 길이를 하나로 정해야죠. 세변의 길이가 각각정해져있는 삼각형은 유일하니깐요.
넓이로는 삼각형을 유일하게 만들수없어요. 아래그림에서 세개의 삼각형은
넓이는 같지만 전혀 다른삼각형이죠.
그러면 예를들어서 AC=4,AB=5,BC=6 인 삼각형을 선택해봅시다.
이 삼각형은 모든 물리적인 상태가 하나로 결정된 유일한 삼각형이죠?
넓이도 물론 하나로 정해져있겠죠.
그렇다면 정사영의 넓이가 하나로 결정되기위해선 또 뭐가 정해져야할까요?
바로 AA',BB',CC'의 길이에요. 저 3개의 길이에 따라서 삼각형과 밑의 평면이 이루는 각이 달라지는거에요.
저 3개의 값이 하나로 결정되면 삼각형과 밑의평면이 이루는각이 하나로 정해져요.
예를들어서,CC'=1,BB'=4,AA'=2 라고 정하면 (물론 이값은 뭘로 잡든 상관이없어요.)
이 삼각형 ABC와 밑의 평면이 이루는각은 무조건 하나로 정해지잖아요?
그럼 이제 정사영의 넓이를 하나로 결정지었으니까 정사영넓이를 구하면돼요. 정사영공식 S'=S*cosΘ를
이용하기위해 삼각형과 밑의 평면이 이루는 각의 cos값을 구해야돼요.
저 상황을 좀 간단히 표현하면 위의 그림과 같은데요. 이상황에서 삼각형 ABC와 평면알파가 이루는각의 cos값을
구하면돼요. 교선이 없으니까 평면알파를 위로 들어올려서 교선을 만들어야되잖아요? 선분BC위의 점중에서
평면알파까지의 거리가 1인점을 P라두고 P의 정사영을 P'이라 했을때 PP'과 BB'의 비율이 1대3이니까
PC와 PB의 비율은 1대2겠죠? 이삼각형의 넓이는 하나로정해져있으므로 삼각형 ABP의 넓이도 구할수있어요.
PA의 길이도 하나로 결정이 되겠죠? 삼수선을 쓰기위해 점B에서 교선에 내린수선의발을 D라할때
삼각형의 넓이 공식을 쓰면 BD의 길이를 구할수있어요. 그럼 이제 cos값을 구할수있고 정사영의 넓이도
구할수있네요. 이걸 소재로 만든문제가 바로
2012학년도 9월모의고사 29번문제에요.
사실 이문제의 조건들은 마치 얼핏보면 출제자가
정교하게 짜맞춰놓은것처럼 보이지만 사실은 출제자가 짜맞춰놓은게아니라 수학자체에
이미 짜맞춰져 있는거같아요.
물론 굳이 짜맞추는식으로 만들수도있겠지만요.
그렇기때문에 정말 복잡하게 짜맞춰놓은거같은 문제는 사실 출제자가 짜맞춰놓은게아니라
이런 수학적인 "문제해결" 과정을 거치면서 자연스럽게 나오는걸수도있어요.
여기서 삼각형을 이등변삼각형으로 선택하고 높이들을 등차수열로 설정해놓고
(이등변삼각형을 정사영시키는 시도를 하는건 필연이겠지만 하필 높이를 등차수열로 해놓은건 우연에 가깝다고 생각하네요)
정사영을 시도하면
이 문제가 되는거구요.
단순히 어떤 평면위에 떠있는 대상을 정사영시키는것은 이제 해볼만한걸 다해봤기때문에
인류는 어떤 시도를 해봤을까요?
바로 공간도형안에서의 정사영이죠. 예를들어서 정사면체의 한면을 밑의 평면에 정사영을 시켜본다던지
정팔면체에서 한면을 다른평면으로 정사영시켜본다던지요. 또는 여러 공간도형들을
조합시켜서 그 상황에서 정사영을 시도해본다던지요. 아래문제처럼요
반지름의 길이가 1인 구3개와 반지름의 길이가 3인 구1개를 선택한다음에
각각 외접하게 만들어서 세상에서 하나밖에없는 상태로 만들어놓고 평면 α에 수직이고
O2,O3를 지나는 평면위의 어떤 대상을
평면β위에 정사영시키는 시도를 하면 이문제가 되는거죠. 이 문제 만든교수님도 이렇게 상황을 만들어놓고
정사영넓이 구해보니까 아이디어가 괜찮은거같아서 내신거같아요. 만약에 아이디어가 별로거나 너무 쉽게풀렸다면
안냈겠죠?
5월 예비시행 30번문제도 마찬가지 원리로 만든문제인거같아요.
이상 수능수학덕후의 개인적인 견해였습니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
무휴반을 해야하나..아님 6월 공군가서 해야하나 고민이다
-
아주대vs과기대 0
둘다 붙을거같은데 어디가야됨??
-
콩나물없어서 아쉽
-
지방 6등급대 사립대 인문->지거국 공대 왜 인서울 못함 ㅆㅃ이
-
근데어쩌다가 비호감짓을 저렇게많이해놓고 호감갤주가된거임 15
예전에분명 ㅈ같은글 한트럭으로올리고 그랬던거같은대.
-
차라리 좀 몽총해지는게 나을지도
-
뭘 올려도 어떻게든 맞히는 사람이 반드시 나온다.. 분명 나는 그게 어딘데 십덕아...
-
1지망 합격기원 4
그래야 올해 원서에 미련이 안남아..
-
진지하게 내식이라 수능 끝나서 그이를 못보는게 가슴이 찢어짐
-
오르비를 발바닥공화국으로 만들려했다가 메인 가자마자 블라먹고 관리자한테 혼남...
-
진짜.. 나 대학생 맞냐..
-
누구에게서든지 배울점을 찾는 자세
-
질문안해주면 엉덩이 만짐
-
모집합니다 잘 적어주시면 천덕
-
동갑한테 선생님 소리 들을 수 있음
-
9시에 일어나야되는데 ㅈ된거냐?
-
잘 자 6
형은 롤 하러갈게 곧 휴면임
-
그건 메가커피 호랑이 선생님의 감각적 직관 풀이를 비판했던 글입니다 블라글은 안...
-
ㅜㅜ
-
뻥이야
-
없으면 영단어 외우러 가야겟다
-
학교다니면서 가장 기억에 남는 흑역사 얘기하기 콘테스트 시작 8
중딩때 너무 급한데 대변기 다 잠겨있어서 소변기에 똥싸다가 선생님한테 걸림
-
신해혁명 기념해서 공화국의 봄이라는 뜻으로 지었었대
-
번호를 내놔라 6
전화를 해주마
-
탑툰 보러감 6
-
오늘의 아침 4
불닭+공화춘 참치마요 삼김
-
난 공용에서 코딱지 파먹는 사람 봄
-
대충 미즈키 짤
-
정수기가 없다는 사실이 나를 미치게함 냉라면 못먹겠네 쿠지라이식 라면이나 먹어야겠다...
-
자려고 누웠는데 잠이 안와서 가장 기억에 남는 글이랑 혜윰님 댓글 달린글 빼고 다...
-
고로 매우 마초적인 행위라고 할 수 있음
-
오늘부터 제 제1 모토는 서로 사랑하며 살자 입니다
-
객관적으론 진짜 개빡센 문제일텐데 또 굇수가 오셔서 20초컷 하실 거 같음..
-
본계정에 여자 비키니사진 좋아요 수만개는 눌러둔거같은데 이거 언제지우냐 대학 가기전까지 지워야하는데
-
없으면 빛삭
-
과시는 결핍이다 5
과시하는 사람은 보통 어딘가에서 결핍이나 열등감을 느끼는 경우가 많았던 거 같음. 아님 말고
-
와 저건 진짜 심하다
-
타비비토노요오니 0
우타카라우타에
-
X카스 같은 매력이 있는듯 인증을 볼때마다 아 괜히봤네; 싶지만 쉽게 끊지 못하는...
-
강아지 잔다 3
기여워요
-
돈으로 환전 가능함?
-
내년에같이컨설팅팀차릴분 20
70만원은 너무 비싸니깐 40~50정도로 가격으로 경쟁력을 가져가는거임 거기에다...
-
방금 시대갤에서 보고 생각난건데 현장에서 1번 보고 너무 대놓고 맞는말만 해서...
-
오늘만큼은 goat인거야
-
실검 1위 찍고 갑니다 10
ㅂㅇ
-
진짜 조심해야하는건 허언증보다는 나르임 허언증은 그냥 정신이 미성숙하고 귀여운거임...
-
빼는 건 그저 그런데 빼고 나서 구멍생기는 게 비호임
-
4합 3 이내를 이렇게 맞추는거였구나
-
왜메인두개갔지 0
우오옹