밑에 합성함수 문제요.
게시글 주소: https://w.orbi.kr/0001683534
lim_{t-> 20-a} f(t) = f(b)
여기서 x^3 + 3x^2 - a = g(x) 라 하면 이 함수는 연속이니
g(20-a) = f(b) 라는 식까지가 나오죠
여기서 f(b)를 g(x)로 표현해 주어야 clockwise 님이 쓰신 풀이를 적용할 수가 있는데요.
f(x)가 항상 g(x)와 같은 것이 아니기 때문에 경우를 다음과 같이 나누어야 하죠.
여기서 일이 복잡해집니다.
왜 나누어야 하는지를 간단하게 설명한다면, 두 경우에 해집합의 양상이 전혀 다르게 나타나니까 그렇습니다.
1) 모든 가능한 b값의 집합에 2를 포함하지 않는 a에 대하여
이 경우에는 clockwise 님이 쓰신 것을 그대로 활용해도 되겠네요.
f(b)=g(b) 라고 말할 수 있으므로 g(20-a) = g(b) 에서 b를 만족하는 값이 2개 이상이면 됩니다.
2) 가능한 b값의 집합이 2를 포함하는 a값에 대하여.
가능한 b값들 중 하나를 2로 가지는 a값들은 다음 식을 만족하는 모든 a값입니다.
g(20-a)=2
그 값이 실수라면 1개 혹은 2개, 그도 아니면 3개가 존재하겠죠.
여기서는 대충 치환해서 보니 3개가 존재하는 것 같네요. 그것을 a1, a2, a3이라고 하겠습니다.
a1의 경우에 대해 조건을 만족하는 b값이 몇개나 존재하는지를 살펴본다면
i) g(20-a1)=f(b) 에서, 일단 앞의 전제에 따라 b=2인 경우가 가능합니다.
ii) 그리고, b가 2가 아닌 경우를 살펴본다면 g(20-a1) = g(b) 를 만족하는 b값이 있겠죠.
해당 식을 만족하는 b값은 세 개 존재합니다.
20-a1, 20-a2, 20-a3 이렇게요.
따라서 이 때의 a1이 만들어내는, 조건을 만족시키는 b의 집합의 원소는 2개 이상입니다.
a1이 자연수이기만 하다면 해답 중 하나가 됩니다.
문제는 함수가 다른 형태로 잡혔을 때, 2번의 해답이 1번에 포함되지 않는 경우가 분명히 존재한다는 겁니다.
아래와 같은 예지요.
g(20-a)=2 의 근이 단 한 개밖에 나오지 않는 경우를 가정한다면
이 때의 a값을 a1이라고 합시다. 이 a1값은 i)과 같은 방법으로 구한 범위 안에 포함되지 않습니다.
하지만 g(20-a)=f(b) 에서 a=a1일 때 이 식을 만족하는 b값은 2개가 될 수 있습니다(하나일 수도 있습니다)
일단 b=2 로 f(b)=2 가 나오는 경우가 있을 것이고
b가 2가 아닐 때 g(20-a)=g(b) 에서 g(b)=2 가 나오는 b가 하나 있을 것입니다. 이 때 b=20-a가 됩니다.
a1이 18이 되지 않는 한 b값은 두 개가 존재하게 됩니다. 따라서 조건에 부합하죠.
여기서 주어진 함수는 분명 아래의 경우를 고민할 필요가 없지만
그 고민할 필요가 없다는 사실도 확인을 해야만 합니다. 그 경우까지 고려해야 완벽한 해답이 나오는 것이
보다 더 일반적인 경우니까요. 요는 모든 경우에서 이 경우는 특별히 2번을 고려할 필요가 없는 형태 중 하나라는 거죠.
b=2인 경우와 b가 2가 아닌 경우는 결과에 영향을 주든 안 주 든 이 문제를 풀 때 필연적으로
고민해야만 하는 부분이구요.
결론적으로 이 문제를 풀기 위해서는 b=2를 해집합으로 포함하는 경우의 a값들이 i) 에서 구한 것 안에
포함되는지 안 되는지를 구분해야 한다고 생각하는데요.
그러기 위해서 아래쪽과 같은 방법이 가능합니다.
첫번째로는 g(20-a)=2 를 만족하는 a값이 자연수가 아님을 보이거나
두 번째로는 g(20-a)=2 의 근이 하나가 아니라는 것을 보여야 합니다.
둘 중 하나라도 만족이 되면 답을 구하기 위해 복잡하게 생각하지 않고
clockwise 님의 풀이대로 바로 접근할 수 있네요.
하지만 여기서 테크닉 없이 둘 중의 하나라도 계산을 하려면 20-a의 3승을 포함한 복잡한 방정식을 정리한 후에
그 방정식의 실근이 대략적으로 어떻게 되는지를 보아야 합니다.
(실제로는 20-a를 t로 치환한 후에 방정식을 정리하고 남은 a를 20-t로 다시 바꾸어 놓으면
t가 정수값이 아니고 근이 3개이기 떄문에, a도 정수값이 아니고 근이 3개가 되기는 합니다.)
제대로 극한의 연속에 대해 공부했다면 정확하게 아 이런 부분이 문제다라고 금새 짚어낼 수는 없어도
분명히 문제가 있는 부분이 존재할 수밖에 없다는 걸 어렴풋이 느끼실 것 같은데요
제가 잘못 생각하고 있는 부분이 있는건지도 모르겠네요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
에타를 보니 고려대학교 에타로 바뀐거 깉더군요
-
수능판 뜨자구요 0
저도 올해보는 마지막 수능으로 꼭 한의대 쟁취할거고 다른분들도 올해 수능이 마지막 수능 되시기를
-
몸이안낫는다 0
ㅈ같네 진짜
-
옵붕이 기상완료 0
어거지로 생활패턴 맞추기 성공
-
하아
-
옯끼야아아악 0
으악 꺄악 끼야아악
-
안올것같지만 반드시 오는 그날이....
-
멘탈 개나간다 1시에 누웠는데
-
ㅈㄴ시끄러
-
ㅠㅠ
-
윾건...그저 goat 하지만 어림없지 '누가 배웠는데'
-
계정 헷갈린 Fㅔ미 검거 ㅋㅋㅋㅋㅋㅋㅋ 진짜 특정 집단에서 계정 사서 여론 조작하는 거 맞다니까
-
진인사대천명 0
수능 다 잘 보길 바라지 않습니다 죽어라 노력한 사람은 실력보다 더 잘 보길...
-
26학년도 수능 0
낼부터 시작할건데 같이 가실 분 댓ㄱㄱ
-
가오도 주세요 그냥 제게 강림해주세요 빙의해주세요 선생님의 가르침 헛되지 않게 해볼게요
-
왜 자꾸 머릿속에 멤도냐 이기상 선생님 목소리 억양이랑 같이 생각남
-
좀 열심히 할걸 싶기도 한데 뭐 그동안 안했던거보면 난 과거로 가도 또 애니보고...
-
술 괜히 마셨다
-
Team 07 D-366
-
노베 재수 1
핑계지만 예체능이라 고3 올라오고 나서는 공부를 거의 안했습니다. 내신은...
-
내일 할거 0
기출 복습후 취침 꿀잠자고 수능 패기
-
오늘 3시간정도 자고 내일 헬스 존나 달려서 11시취침->6시기상 헬스 왜하냐면...
-
동덕여대 0
나중에 역효과 엄청 날 것 같아요 입결 떨어지려나요.... 여튼 사람들한테 인식...
-
날샐려면 10시반~11시까지는 졸음와도 존버타야함
-
일단 나 낼 잠 안올거 같아서 그냥 3시간만 자려고...
-
그냥 수능 공부??
-
이수법 수능때도 써먹어야겟다 걍 깊게 생각안하고 좀만 틀린거같은거 바로 체크하고...
-
얼굴 보여줘야했나 기억이 안나네요
-
안 한지 2개월 넘었는데 저도 참 바보 멍청이네요... 다행인건 반팔 시즌 아니라...
-
ㄹㅇ 밤샐까 2
진짜 30분 ~1시간넘게 누워있았는데 잠이안온다 진짜 차라리 공부하고 저녁 8시쯤에...
-
https://orbi.kr/00060979827/%E2%9D%97%EC%9D%B8%...
-
안녕하세요, Aclass입니다. 수능 시험 직후 정답을 교차검증하여, 높은 정확도로...
-
데드 개빡세게함
-
시위하는거 너무 시끄럽고 꼴뵈기 싫음
-
ㅋㅋㅋㅋ
-
동덕여대 떡밥 0
이거 수능 끝나고 터졌으면 오르비에서 놀맛 났을텐데 ㅋㅋ 좀만 늦게 터뜨리지..
-
후기 남기러 수능날에 돌아올게요
-
작년 수능 전날에 잠 안와서 3시간인가 4시간 자고 들어갔어서 오늘 걍 안자고 내일...
-
진짜 다 왔네요 오늘 하루만 버팁시다!!
-
하려하는데 탐구는 ebsi로 된다봄??
-
수능준비물 3
주변에 평소에도 짐 보따리로 싸 다니는 친구 있는데 수능 준비물로 여분 속옷하고...
-
작년에 이상치 결측치 딱 맞추진 못햇고 수능 2주전에 톡방에서 애들이랑...
-
수능때 물 2
페트병 500ml 가져갈때 라벨 떼고 가져가야하나요? 그리고 시험을 볼때 같이...
-
국수베이스충분함
-
그냥 느낌이 그럼 참고로 작년에 선거 관련 지문 나올거 같다고 느낌왔는데 맞았음...
-
수많은 시험 중에 하나일뿐 능력껏 보는거고 그만큼의 점수가 나오는게 당연 대학 맘에...
-
분명 옛날엔 덕코가 많았던 거 같은데 그땐 어케 많았던 거지..? 오르비를 미친 듯이 했었나..??
-
아니면 오늘 몸 피곤하게 만드려고 전략적으로 안자는거임?
-
하루 벼락치기 해서 1등급 쟁취하는거 보여준다 내가 보여줄게!! 20시간 정도면...
첫번째 댓글의 주인공이 되어보세요.