학습이란 무엇인가? -2편
게시글 주소: https://w.orbi.kr/00019535752
1편에서 가장 중요한 말은 이것이었습니다
똑같은 유형이고, 똑같은 문제이며, 똑같은 방법을 풀리는 똑같은 생각을 요구하는 풀이인데, 왜 앞에 쉬운 문제는 풀었으면서, 뒤에 어려운 문제는 풀지 못하는가????
저는 이 질문을 중심으로 여러 가지 경험을 되새겨보고 상상을 해 보았습니다.
제가 다른 예시를 들어보겠습니다. 제 친구중에 서울에 대학을 간 친구가 중고등학생을 대상으로 수학 과외를 하는데요. 재밌는 일화를 말해주었습니다
여러분 ‘약수개수 구하기 문제’ 기억나십니까? 중학교때 소인수분해를 배우면서 우리는 이 ‘약수개수 구하기 문제’를 공부합니다. 약수개수 구하기 문제는 아래와 같이 해결됩니다.
(출처 : ZUM 학습백과)
풀어쓰자면, 우선 어떤 수를 소수인 인수로 분해한 다음(소인수분해), 각각 소수들의 지수에 +1씩을 하여 곱하면 됩니다.
10을 예시로 들자면 (2^1) x (5^1) 이니까 (1 + 1) x (1 + 1) = 4 이므로 10의 약수개수는 4개입니다.
친구의 이야기로 다시 돌아와서, 친구는 중학생들에게 이런 식으로 소인수분해를 이용한 약수개수 구하기 문제를 설명해 주었습니다.
그런데 여기서 문제가 생겼습니다. 항상 학생들이 10, 20, 50 같이 아주 작은 숫자의 경우에는 약수개수를 구하는 데 문제가 없었으나, 5675674와 같이(제가 임의로 높게 잡은 숫자입니다) 큰 수에 대해서는 약수개수를 구하는게 불가능했다는 것입니다.
여기서 다시 중요한 질문으로 돌아옵니다.
똑같은 유형이고, 똑같은 문제이며, 똑같은 방법을 풀리는 똑같은 생각을 요구하는 풀이인데, 왜 앞에 쉬운 문제는 풀었으면서, 뒤에 어려운 문제는 풀지 못하는가????
여러분, 10의 약수개수를 구하는 문제나, 5675674의 약수개수를 구하는 문제를 서로 다르다고 보십니까? 숫자가 달라졌으니 이 둘은 별개의 문제이며 별개의 방법으로 풀어질까요?
당연히 아닙니다. 숫자가 크건 작건 그런건 상관없습니다. 만약 내가 약수개수를 구하고 싶다! 하면 어떤 숫자가 나오든 소인수분해하고 지수들을 구하면 끝입니다. 물론 작은 수의 약수개수는 상대적으로 그 수가 적으므로 구하는데 걸리는 시간은 짧겠지요. 하지만 큰 수의 약수개수를 아예 못 구한다는 것은 문제가 됩니다. 결국에는 풀어야 할 문제임에도 불구하고, 한 문제는(쉬운 숫자 작은 숫자) 쉽게 풀면서 다른 한 문제는(어려운 숫자 큰 숫자) 못 푸는 불상사가 생깁니다.
이것은 결국 그 중학생이 작은 숫자의 약수개수를 구할 땐 ‘일일이 그냥 세서 답을 구했’기 때문입니다. 10이야 뭐 그리 큰 수도 아니니까 저도 4초만 있다면 1,2,5,10 아 4개네! 라고 말할 수 있겠습니다.
결국 이 학생의 문제는 쉬운 문제는 쉬운대로 대충 끼워맞춰서 풀고, 어려운 문제는 쩔쩔 메고 아예 접근을 못한다는 것입니다. 만약 그 중학생이 쉬운 문제를 풀 때 제 친구가 가르쳐준대로 소인수분해를 이용했다면, 그 중학생은 큰 숫자 또한 막힘없이 답을 구할 수 있었을 것입니다.
또 다른 예시가 끝났습니다. 다음 편에서는 ‘알고리즘’, ‘시냅스’ 이 두 단어에 대해 알아보도록 하겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
언냐 뭘 부정하고 있어
-
어떻게 대해야할지 잘 모르겠음.. 특히 그 사람과 다른 사람들 같이 있을때 스스로...
-
컴공 생각하고 있었는데 점점 ai발전하고 이미 기술자들 많은거 같은데 지금이라도...
-
안녕하세요. 처음으로 글 써봅니다. 일단 전 광역시중 하나에 거주하는 남학생입니다....
-
어케한거냐면 진짜 말그대로 하루종일 아무것도 안먹음 아이스아메리카노나 제로 음료는...
-
이게오르비지 ㅋㅋ
-
나랑 키배 잘뜨다가 어디갓어
-
상향으로 한장 쓴다면 고려대 철학과, 연세대 신학과 중 어디가 그나마 가능성 높아보이시나요..??
-
6평에도 언매 다 맞았었는데 시간도 많이 안쓰고 수능날 가니까 비가 내리던데 공부는...
-
작년 생명 엣지 1
엣지는 크게 안달라지나여? 살까해서..
-
학교가 수원이라 놀아달라고도 못함 ㅠㅠ
-
애기 때는 귀여웠는데 12
지금은 늙어버린 재수생이 됐음 엄
-
개인적으로 예수도 안믿지만 타로는 믿음 학교축제에서 타로 봤었을 때 매 우 정 확 했 음
-
지금은 95키로임 ㅋㅋㅋ
-
근데 돈이 없어...
-
그냥 그런생각이 듬 물론 그 평생이 얼마 안남은듯
-
??
-
난 친구가 없어 2
흑흑
-
서울대, 한양대는 학종 정성평가라 검1고생은 나가리고 고려대, 연세대는 정량평가라 쓰여있네
-
결혼하고싶다 와이프한테 이것저것 요리만들어서 먹이고싶다 앞치마 두르고 요리하고...
-
다들 잘자요 4
헤헤헤
-
오야스미 0
네루!
-
어디로 가야하나요 입결로 따지면 숭실이 압승인것같긴한데 광운대 전자가 아웃풋으로 좀 유명해서...
-
자라. 캬캬. 3
내일 1교시라 자러 갑니다 편안한 밤 되십쇼 오르비 소등하겠슴다
-
스플랑크니조마이 :) 슈퍼초대박날거야 :)
-
ㅈㄱㄴ
-
안 자는 사람? 6
-
ㅈㄱㄴ 일단 스카이는 다 보고
-
05형님들이 수능보고나서 11월말쯤에 같은 반애들끼리 이제 정시 시작이라고 같이...
-
수능끝난날부터 아침저녁 신경안쓰고 무지성으로 깰때까지 수면, 배고플때 밥,...
-
따뜻한 물에 삶아지는중 노곤노곤
-
효용이 없다 이런걸 말하려는건 아니고 읽는걸 잘 못하는 사람이 읽는법을 읽어서...
-
인강 완전 대체로 독학서느낌? 같긴한데
-
사탐신규커리 0
보통 언제나옴?? 정법이랑 생윤 할 거 같음
-
뭔가 좀 아쉽네 지구1
-
무지성 토익 신청함 14
걍 가면 몇 점 나옴?
-
아예 균형을 잃는 것도 하나의 방법일 수 있음. 균형을 잃고 거기서 추진력을 얻어서...
-
저들이 나와같은 인간이라는게 믿기지않는 압도적으로 똑똑하거나 성실하거나 아름답거나...
-
흐어
-
비문학 독해 연습 드가자...
-
가슴 한 켠에 증오 대신 문학을 담고 오늘의 끼니보다 내일의 희망을 노래하는 사람이 되고 싶어요
-
국어 공통 김승리 풀 커리 언매 유대종 수학 예체능이라 X 영어 션티 or 이명학...
-
남초 입시커뮤에 왜 여시충 아줌마가 와서 여대관련 이슈만 보이면 아득바득 달려와서...
-
앞으로 데이터사이언스, 데이터분석 관련 직군이 더욱 늘어날거라 미래에 배팅한다고...
-
수능에선 걍 잘풀고 답맞추면 장땡이지 수험생입장에서 강사가 출제자의도를 보여주니...
-
두 문제 틀렸는데 그럴수도 있음?
공감합니다
쉬운 문제를 통해 본질을 파악하고 일반화 시켜야 어려운 문제를 풀 수 있죠