이 확률 문제의 풀이를 공모합니다.
게시글 주소: https://w.orbi.kr/0002825072
여러분이 공정한 동전을 하나 갖고 있습니다.
동전의 앞면을 H, 뒷면을 T라고 합니다.
동전을 반복해서 던지면서 나온 면을 차례대로 기록해나갑니다.
(1) 기록의 마지막 네 글자가 THTH 가 되는 순간 던지기를 중단한다고 할 때, 평균적으로 몇 번째에 던지기가 중단되겠는가?
(2) 기록의 마지막 네 글자가 HTHH 가 되는 순간 던지기를 중단한다고 할 때, 평균적으로 몇 번째에 던지기가 중단되겠는가?
(3) 무한히 기록을 해 나갈 때, THTH 가 HTHH 보다 먼저 나올 확률은 얼마인가?
위의 세 문제의 답을 구하고 보면, 일종의 역설을 얻게 됩니다. 저명한 퍼즐리스트 마틴 가드너가 낸 문제라고 하네요.
제가 궁금한 것은, 이 문제를 고등학교 수준에서 풀 수 있는가 하는 점입니다. 만약 힘들다면, 최소한 다음 변형된 문제
(3') 무한히 기록을 해 나갈 때, THTH 가 HTHH 보다 먼저 나올 확률과 나중에 나올 확률 중 어떤 것이 더 큰가? 혹은 두 확률이 같은가?
에 답을 할 수 있을까요?
(물론 저는 답도 풀이도 알고 있습니다만, 고등학교 수준을 벗어난 풀이라서... 한마디로 '초등적인 풀이'가 가능하겠냐는 것입니다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅋㅋㅋㅋㅋㅋㅋㅋ…
-
이건 진짜 흔치않은데
-
그의 생일이 당시 국왕보다 신문에 크게 찍혀서 그 이후로 개인의 생일을 신문에...
-
헉
-
이거거든
-
오전에 과외 두 개 후딱하고 공부하면 완벽한 하루가 되겠어
-
07인데… 좀 기념으로 남길 수 있는 수특 디자인을 줘…
-
근데 10회분이었네 몇개 풀었긴 한데 수능 전까지 다 못 풀고 갈 듯...
-
다음날에 일어나기 힘든가? 반대 아닌가
-
아쥬임
-
ㅜㅜ
-
음 역시귀엽군
-
걍하고싶은거해야지
-
1? 3? 시대나 강대 3월애 열던가?
-
우울증약은 성욕이 없어지고 개졸림 자도자도 피곤함 adhd약은 식욕이 없어지고...
-
탐구 물지 선택이고 물리3 지구2 목표로 하고 있는데 수능 직전에 풀 걸로 수특을...
-
롤스 만민법 정의론 원전 2회독 노직 아나키에서유토피아로 번역본 1회독 칸트...
-
아니 요즘 왤케 일어나기 힘들지 ㅅㅂ 지각만 5번 넘는데
-
제가 보보봇치 한다고 하니까 원조 뺏길까봐 거금 쓰고 다시 보보봇치로 바꾼듯,, 맞으면 개추 ㅣㅋㅋ
-
아니 벌써 1
추운 겨울이다 아아
-
김승리 현강 0
9시 수업도 늦게 끝나는경우 많나요...?
-
진짜 불국어 만나면 1교시 국어 난이도가 2교시 수학 성적에 미치는 영향에 대한...
-
일단 제가 푸는 방식으로 3시간동안 안풀려서 밑에 그림은 먹어버려서 제가 그렸습니다...
-
영상이랑 블로그글까지 다 봤는데 진짜 존경스러우시다.. 나랑 2살 차이밖에 안...
-
이거 바꿀려면 참아야함?
-
친<<<<개국밥인 그냥
-
본인 대학 어디로 가게될지 걱정하셈 심찬우t는 폰허브에서 강의하셔도 살아남으실 분임...
-
이감파이널 개어려운디
-
작년 겨울부터 정시로 돌려야겠다 마음 먹고 방학에 관독 다니고 윈터스쿨도 갔다오고…...
-
나오면 계속 틀리는데 깔쌈하게 구분하는 방법 없나요? ㄹㅇ 한국인의 감으로 풀어야 하는거...?
-
영어 만년 2따리에서 기출 찐득하게 보고 고정 1 갔는데 절평이기도 하고 저도...
-
진지하게 수학 서바 난이도로 수능 나오면 1.2컷 어느 정도에 잡힐거라고...
-
수완 뒷부분 실모 좀 남았으면 그게 우선인가요?
-
모의고사도 잘치고 수능도 잘침 -> 입시판 떠남 모의고사는 못치는데 수능은 잘침...
-
사문 시간 부족 0
사문 시간 부족 어케 해결하나요? 11덮 풀엇는데 2문제 읽지도 못해서 44점...
-
다들 원하는 성적 받으시길.. 아참 03,04,05도 ㅎㅇㅌ
-
내가 잘못들은거겠지...? 방귀를 3분에 한번씩 뀌는데.... 설마 이어폰 끼셔서 못듣나...?
-
수능 며칠 안 남았다는 핑계로 병신같은 글 쓰는 사람이 넘 많음 만사에 예민할...
-
방금(토요일오전) 심찬우샘 강의 두개 구매했는데 5일이내 들어야 하는 건가요?...
-
설마 진짜로 저거 쓰는 사람 없겠지
-
코노가서 예쁜나이25살 부를거임
-
D-370 7
26수능으로 04년생이 간다
-
9회분 남았네 ㅋㅋㅋㅋ 최신기출이랑 ebs 벼락치기도 해야해서 수능까지 두개밖에 더...
-
물수능=불원서 2
수능 점수가 아니라 원서로 대학간다고~
-
어 형이야 7
형은 첫날부터 의회 폭동자를 사면할 예정이야
-
근데 올해만큼 6,9에 직접연계 많은 적이 있었나요 1
올해 69연계빨 엄청 큰거같은데
-
쓴소리받고싶은데 13
난 진짜 누가 욕 박을까봐 못 올리겠다
-
1회 36 2회 45 3회 33 4회 42 5회 37 6회 39 ㅈㄱㄴ...
-
헉 2
헉
THTH 가 발생하는 회차의 기댓값은 20 일 듯 하고,
HTHH 가 발생하는 회차의 기댓값은 18일 듯 한데... 계산은 직관적이라 쓰기가 좀 어렵네요.
위의 결과를 보면 HTHH 가 먼저 나올 확률이 클 듯 한데, 결과를 구해보면 오히려
THTH 가 먼저 나올 확률이 9/14 이고, HTHH 가 먼저 나올 확률이 5/14 가 되서...
THTH 가 먼저 나올 확률이 더 크군요.
풀이방법은 유향그래프와 무한등비급수를 이용했습니다.
직관적이라도 좋습니다. 모두 정답이니까요. 어떻게 계산하셨는지 설명을 부탁드려도 될까요?
적기가 어려워서 맨 위에 하나(THTH)만 간단히 적어보겠습니다.
처음 상태를
라고 합니다.
상태에서는 H 또는 T 가 나올 수 있는데, H 가 나오면 아무런 도움이 안되므로 그냥 처음 상태와 같습니다.즉,
상태에서는 각각 1/2 의 확률로상태로 남거나 상태로 이동합니다.
상태로 이동합니다.
상태에서는 1/2의 확률로 상태에서는 같은 방법으로 하면 1/2 의 확률로 상태로 남거나
상태로 되거나 상태로 됩니다.
상태에서는 1/2의 확률로 상태로 되거나 상태로 됩니다.
이제까지 결과를 이용하여 각 상태를 꼭짓점으로 유향그래프를 그릴 수 있고,
상태에서 상태가 되는 데 까지의 회수의 기댓값은 2 상태가 되는 데 까지의 회수의 기댓값은 2
상태에서 상태가 되는 데 까지의 회수의 기댓값은 6
상태에서
상태에서 상태가 되는 데 까지의 회수의 기댓값은 10
이 되어, 기댓값 20을 구한 것입니다. 각각의 기댓값은 무한등비급수 형태로 계산했고요.
오오, 상당히 재미있는 풀이네요.
우선 확률공간 {S, T, TH, THT, THTH} 와 {S, H, HT, HTH, HTHT} 각각에 대한 전이행렬 A를 구하고,
A + 2A^2 + 3A^3 + 4A^4 + ... = A(I - A)^-2
를 구해서 초기상태를 먹이니까 정말로 최초 출현 시점의 기대값이 나오네요. 그리고 확률공간 {S, T, H, TH, HT, THT, HTH, THTH, HTHH} 에 대한 전이행렬 A를 구해서
A + A^2 + A^3 + A^4 + ... = A(I - A)^-1
을 구하고 초기 상태를 먹이니까, THTH 로 끝날 확률과 HTHH 로 끝날 확률이 나오는군요.
원래 제가 아는 풀이법은 stopped martingale을 이용하는 방법이라, 확률미적분(stochastic calculus)에 대한 기본 지식이 없으면 쓰질 못했거든요...
좋은 풀이 배워갑니다.