MediVa : 수학 시험의 기술(2012)_4월모의 대비2 - 행렬의 성질 정오판정
게시글 주소: https://orbi.kr/0002858463
수학시험의기술(2012)_3.pdf

안녕하세요. MediVa입니다. 4월 모의고사 대비 자료입니다.
3회 정도가 연재될 것 같고, 이번 자료는 2번째로 행렬의 정오판정에 관련된 자료입니다.
작년 4월 모의고사의 중요한 기출과 수능의 출제 요소를 풀 수 있는 '기술'을 정리했습니다.
이 자료는 <수학 시험의 기술>에 바탕을 두고 만들어졌습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
질문받아요 2
각종 공부질문 일상질문 뻘질문 다 받아봐용
-
통통이들 보샘 0
https://orbi.kr/00072695973#c_72696162 28번에서...
-
추가로 워크북만 풀 생각인데 가능한가요?
-
국어공부 열심히 했는데 2등급이 떠버리고 수학을 못해서 망하고 그나마 1뜬게 영어...
-
마닳로 기출 보려고 샀는데 기출을 돌린다는 의미를 잘 모르겠어서 하루에 1회씩 계속...
-
단위 시간 동안 방출하는 에너지양에 대한 별의 질량이 왜 별의 수명에 비례하나요..!?
-
bxtre.kr/
-
첫인상 말투 이런 것들은 상당히 중요하다고 생각함
-
추가로 워크북도 풀 생각임
-
똥테가 진짜 오르비에 시간은 시간대로 꼴아박고 인지도 없는 찐따 << 대변하는 느낌이라 개싫은데
-
美 관세 폭풍에 펭귄도 ‘어리둥절’… 트럼프, 호주령 무인도까지 때렸다 1
도널드 트럼프 미국 대통령이 2일 전 세계 교역국들을 상대로 상호 관세를 발표한...
-
개념 끝내면 김준 기출강의랑 어나클 보려고 하는데 개념 강의 누구 듣는 게 좋을까욤
-
[(모두에게 덕코 2000) 캡처 후 댓글 -> 덕코 증정]...
-
맞 팔 구 9
똥테 싫어
-
리트 추리논증 0
재미 삼아 풀어봤는데 뭔가 국어 보기지문 같기도 해서… 얘는 수능 국어에 도움이 된다고 보시나요?
-
누렁아 이거 니나 무라
-
출결 안 챙기면 기능사 공부한다. (사실 성수기에 가려면 출결 만점도 해야됨 ㅎㅎ;;)
-
bxtre.kr/
-
저녁추천좀
-
인스타에 앨범예고
-
정신적으로 문제있는 애는 예뻐도 안만나줌 부정적이어도 안놀아줌
-
이 사람이 테두리 색이 먼지 이 사람이 뱃지가 먼지 이 사람이 에피...
-
수학 자이스토리 0
ㅜ미적 3모수학4인데 지금 자이 돌리는건 너무 시간 잡아 먹을까여?ㅜ 수능은 2~3...
-
시간이빠르다..
-
미적분/확통은 없나보네요.. 못찾는건가
-
오리엔트 정공에 1억 다 넣고 이익률 1위라 카더라
-
그렇게 생각함 나는..
-
오늘 11시반 7
미국 천연가스 재고발표..
-
현역때 국어 5등급이었는데 이원준 해설보고 이 사람이다 확신후 바로 브크 들었음...
-
안녕하세요. 이딴 걸 가르쳐도 되나 싶지만 생각보다 유용한 경우의 수 계산...
-
흠 13
-
옵붕이들은 어떤가요 19
그 분이랑 30분 거리에 있는 곳에서 이제 집 간다고 했는데 차로 데려다 준다고 온...
-
공부의 첫 단계는 부족한 부분을 찾아내는 것이라고 생각하는데, 국어에선 부족한...
-
핵폭탄? 그딴걸론 성에 안차지 초신성 감마선 폭발로 지구를 0.31728123초...
-
화1은 가오가 아니라 객기다
-
221010이차함수로 돌려서 풀어도 되는거 맞나요? 2
문제 밑에 코멘트 보니까 로그함수로 푸는거같아서
-
포만감이랑 집에서의 아늑함 버리고 추운 골목길 10분동안 걸어가서 스카 의자...
-
휴휴
-
귀여워
-
언매 헤이팅 하지 말아 주세요
-
수능 관련해서 고민이네요
-
안해도 2고 하더라도 ㅈ빠지게 안하면 어차피 2라 걍 하기가 시름ㅋㅋ; 근데 하긴 해야겠지...
-
D-21 0
중간
-
최석호 2022년 평가원 예시문항 공통 전 문항 해설 난이도 3 약간 쉬움 1급...
-
21년 9월 가형 21번 문제입니다. 요렇게 풀다가 ...1 의 경우가 해석이 잘...
-
그냥 학교를 가기 싫은거였어 ㅋㅋㅋㅋㅋㅋ 에휴 과제 또 해야하는구나
-
수학 안하니까 0
오르비에 할말이 타인의 10퍼센트 밖에 안됨
-
(예) 사회적기업 스튜디오115 무료인강입니다. 스튜디오115(스튜디오일일오)에 전...
3번째 문제는 4월모의고사 작년 기출에서 생각보다 정리할 내용이 많지 않아서 4월 모의고사 대비에서는 다루지 않고, 4월 모의가 끝난 후 6월 모의고사 대비기간에 수능, 평가원 기출로 다루는 편이 나을 듯 합니다. 보다 좋은 자료로 찾아뵙겠습니다.
좋은자료감사합니다 Goo:-D
좋은 자료 감사합니다
감사합니다~~
행렬에서 곱셈의 교환법칙이 성립하는 경우는 A 가 B또는 B의 역행렬에 관해 표현되면 됩니다.
ㄱ 에서 ㅡ2B 를 우변으로 이항하면 A= 2B+E 로 A가 B에 관해 표현되죠?? 그럼 교환법칙이 성립하는 겁니다.
언제 반례를 다 찾고 있습니까 ㅡㅡ; A^2=B^2 처럼 양쪽 다 거듭제곱 형태면 교환법칙이 성립하지 않구요.
한 행렬이 다른 행렬의 다항식 형태로 표현되는 경우라고 해야 좀 더 맞는 표현일 것 같네요.
간단한 경우로 xA + yB =kE 가 되는 형태는 제 자료에도 명시를 해 두었습니다.
A가 B에 관해 표현된다는 말은 'A= B에 대한 다항식'의 형태를 말씀하시는 것 같은데,
그 경우는 설명에서는 빠져 있던 것 같습니다.
그리고 반례를 찾는 것은 답을 확신하기 위한 수단입니다. 제 원고를 보시면 알겠지만
반례를 찾는 과정 중 '여기까지 의심해 보고 시간이 없으면 넘어가라'고 서술을 해 두었습니다.
하지만, 문제를 풀다 보면 이런 교육청 문제처럼 정형화된 형태만 등장한다고 장담할 수 없으므로,
적절한 반례를 찾는 것 역시 연습의 대상이 되며, 그렇기 때문에 한 문제를 깊이 공부하기 위한 자료의 특성상 반례를 찾아가는 흐름에 대해서 서술했습니다. 그리고 제가 찾은 반례도 하늘에서 뚝 떨어진 것이라기보다는 어느 정도 논리에 의해서 반례의 범위를 줄이는 과정에 초점을 맞추어 서술하고자 하였습니다.
행렬의 성질 문제는 수능에 나온다면 계속 지금까지 보지 못한 형태로 제시할 확률이 높기 때문에,
특정한 행렬의 구조들을 달달달 외우기보다는 문제에서 추론해서 풀어 가는 것이 필요합니다.
그렇기 때문에 이 자료에는 다소 장황할지 모르지만, 최대한 일반적이고 보편적인 추론 과정을 적고자 하였습니다.
부족한 자료에 대한 비판 감사합니다.