난만한님 계신가요?....제발 도와주세요~
게시글 주소: https://w.orbi.kr/0002925934
help~.hwp
수능다큐 미통기 81번을 풀다가 멘붕이 왔습니다.
제 풀이방법으로는 답이 도통 나오질 않으니 잘못됐다는 것만 알겠네요..
어디서 부터 뜯어고쳐야 하는건지..
첨부파일로 문제랑 제 풀이방법을 올렸습니다.
도와주세요~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
내년 수능 응시예정인데, 시발점 대수,미적분 들어도 관계 없겠죠? 0
현우진T 조교님들은 되려 대수랑 미적분을 들어라고 하시는데 들어도 크게 상관없겠죠?
-
느려도 돼 1
마음을 둘 곳도 없고 더 갈 곳도 없는 슬픈 거북이 한 마리 상처가 많아 너 혼자서...
-
있으신분 ㅠㅠㅠ 답지를 집에서 잃어버렸어요
-
28번 푼사람 있음?? t랑 넓이값 계산할때 x축과의 교점값이 서로 관련이 있어서...
-
파이널디렉션 끝내기vs빌드업 문제 풀면서 회독
-
하 진짜 어렵다 7
사람 끊어내는게 제일 어려운거같음 심지어 한번 좋아했었던 사람을.. 지금은 진짜...
-
매년 찝찝한게 극갈래인데 올해는 더 신경이 쓰이는 갈래이기도 합니다. 극갈래...
-
11덮 국어 90 수학 92 영어 93 사문이랑 생윤은 말아먹음(사문은 9월쯤에...
-
오른발 3개 왼발 1개 아파요 흑흑
-
수학안풀리네 6
오랜만에 100분 꽉채웟다.. 내가싫어하는 유형만 짬뽕이엇서...
-
나이스 6
-
국수영 생윤 사문 100/80/1/44/44 생윤사문 실모 풀땐 50 잘 나오는데...
-
(1) 현대시 비연계 -> 할매턴우즈급 비연계 (2) 고전시가 관동별곡 +...
-
풀게 너무많네요,,,그냥 빨리 확통.하러.가고.싶.은데,,,
-
양심이 뒤진건가 한두번도 아니고 매일임 러셀 목동 hs관에서도 한명 있었는데 어딜가든 있네 ,,,
-
헤비옯창이면 0
매체는 잘 안 틀릴까?
-
좀만 자야지 3
30분뒤에 깨워주셈
-
아 인증뭐임 1
못봤잖아
-
FULL CHANGE 생각이 완전히 바뀐다 내가 새롭게 바뀐다! 내가 완전해지는...
-
1~9 무난한 문제들 9번에서 삐끗해서 두번푼건 비밀 10 계산하기 편할거같은...
-
저는 수학만 쳐패는중
-
가위눌리는거랑 동시에 일어남 공포영화같은 악몽을 꾼 담에 질식하는 느낌이 들면서...
-
국어 > [강대모의고사K 10회] 공통, 화작 > [수능특강 독서] 3부 2회...
-
오늘부터식단시작 4
우둔살먹고울었다
-
이감만 보면 0
3-1-1-1-1-4 이게 맞냐고 안정된듯 하다가도 ㅈ박아버리는 개같은...
-
피곤하다 피곤해
-
이게 무슨 인생이야
-
ㅇㅈ하면 안댐
-
풀 때 22 28은 일단 제끼는데요, 시간이 애매하게 남았을 때 어떤걸 먼저...
-
아 수학 어렵다 0
하
-
집중 안될땐 다들 33
어떤 공부 하시나요? 진짜 간절합니다
-
생윤 ~에 대한의무 , ~에 관련한 의무 뭔차이임? 2
인간에 대한 의무 인간과 관련한 의무 동물에대한 의무 동물과 관련한 의무
-
그냥 서바는 아주 잘 풀리는데 서바 리부트풀면 멘탈 터지고 그날 하루종일 기운 쫙...
-
메디컬들도 사탐을 더 풀려나요 저는 개인적으로 이제 수능은 최저 맞추는 용도로...
-
개념.기출(김성재t)+ebs(수특.완)+특특.실전300(강민웅t)+다이나믹스n제...
-
이번수능에서만큼은 페이커할것이다.
-
마법의 요정 10
달이 기울고 별무리가 흐르는 어느 야심한 밤, 오늘도 힘든 실모 러시를 끝내고...
-
근데 인증보고 나면 19
이후로 그분 글올라오는거 볼때마다 폰잡고 글쓰는게 실감나게 상상되어서 뭔가 웃겨요
-
굶주리다 1
비통사적 합성어 마즘?
-
좋겠다..
-
현장응시가 6평 단 한 번밖에 없었다는 것임... 6평때도 긴장감 지렸는데 수능은...
-
몸상태가 이상함 1
어제는 몸은 안피곤하고 정신이 피로했는데 오늘은 몸이 피곤하고 정신이 밝음
-
평가원 점수 1컷에서 2컷극 초반 나오고 김승모도 못쳐도 2등급 이내로 나오는데...
-
일단 상식도 풍부해지고 재밌는 판례도 많고 전문직도 될 수 있음
-
나는 바보다
-
보정 표점 백분위 등급 어떻게되나용
-
어..? 4
몸상태가 조금... 불길한데
-
두루미 가족 13
-
뭔가 다들 대단한게 10
나는 현역 수험생활 때 하루 아침에 늦게 일어나거나 뭔가 컨디션 조지면 늘 그날은...
│x-b│>1 이렇게 시작하셔야 해요
그러면 x=-1+b 와 x=1+bd 일때 g(x)는 불연속인데 f(x)의 두 근이 -1+b,1+b면 h(x)는
연속이 됩니다. f(x)의 두 실근의 합은 4이므로 (-1+b)+(1+b)=4가 되어야 합니다.
그러면 b=2가 나오고 두 실근의 값은 -1+2=1 과 1+2=3
즉 두 실근 1,3이 나오므로 f(x)에서 두 실근의 곱을 말하는 a=1*3=3이 됩니다.
그러므로 a+b=3+2=5가 됩니다.
참공익님의 접근방법도 해설지와 유사하네요^^
우선 답글달아주셔서 감사합니다.
절대값이 나오는 수식의 접근법은 │x│>1으로 시작해야 된다고 늘 배우긴 하지만
과연 제가 접근한 방법은 아예 원천적으로 잘못된 것인지요...
음....혹시 설명해주실 분 계신가요?
글씨가 이쁘시네요 ㅋㅋ
음... 봅시다 극한을 취하는 값의 변수가 n이지요? n이 무한대로 발산하고 있으므로 n이 포함되어 있는 항을 보면, l x-b l^n 이라고 되있네요.
이 항을 잘보고 범위를 나눠서 값을 계산해야 할 터인데, l x-b l 의 값에 따라 그 n제곱의 값 또한 변하므로, l x-b l 을 기준으로 나눠야 이 값을 정할수 있어요~
써놓고 보니 빙빙 도는 느낌인데.. 제가 보기엔 n이랑 x랑 헷갈리신듯... i)의 경우에만봐도 x=b=3이라고하면 값이 1이 나오거든요... ㅎㅎ
기본적으로 저런 유형의 문제를 푸시는 방법을 체화하시지 못하신거같아여.. 굳이 b를 0 - + 로 나눌 필요가없이 Ix-bI>1 <1 =1 로 나누면 x값에 따라 알아서 b값이 정해집니다.
등비수열의 극한을 생각해보셈...공비가 1보다 클떄랑 1일때 1보다 작을 떄로 나누잖아요... 같은맥락...
그렇군요....아예 처음부터 무한등비수열의 극한이라는 점을 간과하고 절대값에 쫄아서 그래프를 그리는 것부터가 잘못이였군요.....ㅠㅠ 아직 멀었네요...저...
감사합니다~ 또 깨닫고 갑니다^^;
b>0 인 경우를 예를 들면 b>0 일때 잘생각해보시면 lx-bl의 n제곱이 발산한다는 근거가 없지않나요? b<0 인 경우도 마찬가지구요.
그렇기 때문에 lx-bl를 기준으로삼아서 수렴발산 조건에 따라 1보다 작냐 크냐 같냐 로 나누는거에요!!
도움이되셨으면 좋겠네요.