미분을 하는 이유
게시글 주소: https://w.orbi.kr/00032311656
안녕하세요.
수학강사 이승효입니다.
오늘의 주제는,, "미분을 뭐하러 해?"
먼저 아래 문제를 봐주세요. 이번 9월 모평 가형 18번입니다.
나형 학생도 풀수 있는 문제입니다.
나형이라면 '호옹~ 우리가 풀수 있는 문제도 가형에 나오다니,,'
가형은 '어라, 문제가 좀 다른데?' 라는 생각이 들지요?
네, 가형은 아시겠지만
문제에 출제된 f(x)는 저런 형태였지요?
(나형 학생들도 좌절하지 말고 끝까지 읽어보면 도움이 될거에요. ^^)
그런데 처음 함수처럼 f(x)가 쉬운 형태(다항함수)로 나오더라도,
이 문제의 해결전략이나 풀이방법은 전혀 달라지지 않습니다.
여기서 우리가 알아야 할 것은
평가원에서 함수추론 문제를 만드는 방식
이에요.
평가원에서는 종종 복잡한 (또는 복잡해 보이는) 함수의 식을 던져주곤 합니다.
수학 고정 1등급의 고인물수라면
'나에게 어떤 함수를 던져주더라도 전부 미분해 버리겠어
(심지어 두번미분)'
라는 마인드로 함수를 탈탈 털어버린 다음에
그걸 이용해서 문제를 풀어도 시간이 모자라지 않겠죠.
그렇지만 평가원 문제 중에서
오로지 식으로만 풀어야 하는 일부를 제외한 대부분의 함수 문제는
복잡한 함수를
"같은 성질을 가진 매우 쉬운 함수"로 치환하더라도
같은 방식으로 풀리도록 문제가 성립합니다.
왜 이런 현상이 벌어질까요?
문제를 제작한 경험이 있는 분들은 잘 알고 계실겁니다.
문제를 만들때, 밑도 끝도 없이 복잡한 함수 식부터 세우고
문제를 만드는 것이 아니라
1. 특정한 교과서 개념을 확인할 수 있는 상황을 설정하고
2. 그 상황에 적합한 함수 식을 만든 다음
3. 만약 문제의 난이도를 올리고 싶으면
같은 성질을 갖는 좀 더 복잡한 함수로 업그레이드 한다.
이런 식으로 문제를 만드는 것이 일반적이기 때문이에요.
즉, 이렇게 복잡해 보이는 함수 문제에서 중요한 것은
1. 함수의 중요한 성질을 빨리 캐치한다.
2. 쉬운 함수로 바꿔서 그래프의 개형을 추론한다.
3. 개형을 이용하여 문제를 아주 쉽게 푼다.
인 것입니다.
이러한 원리는 이번 18번에만 활용되는 것이 아니라
평가원 기출에서 폭넓게 활용되고 있답니다.
기출분석이 끝나고 암기까지 된 학생이라면
이번 f(x)안에 있는 로그함수와 이를 이용한 g(x)의 정의가
2018학년도 6평 30번의 재활용이라는 걸 바로 캐치해냈을거에요.
주어진 함수의 중요한 성질(대칭성, 아래로 볼록)만 파악해서
f(x)를 2차함수로 바꿔 버리면 쉬운 수학2 문제로 바꿀 수 있죠.
다시 원래의 질문으로 돌아가서 글을 마치려 합니다.
미분을 뭐하러 해?
미분은 함수의 성질을 모르니까 한다.
예를 들어, 3차함수의 식만 보면 이 함수가 극점을 갖는지 안갖는지
어디서 증가하고 감소하는지 알수가 없죠.
즉, 숨은 성질을 찾는 함수의 해석도구가 미분인 것입니다.
이번 18번 문제에서 주어진 함수는
1. 원점을 지나고 양수구간에서 증가하는 함수이다.
2. 구간 (0,1)에서 함수는 1보다 작다
-> 10제곱하면 미친듯이 더 작아진다.
라는 두 가지 성질을
미분이라는 도구 없이도 충분히 찾아 낼수 있습니다.
미분의 꿀팁 중 하나는, 신기하게도,
미분을 쓰지 않는 것이에요. (!)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이건 팩트인듯요
-
재수는 슬퍼....
-
가천대 명지대 경기대중 셋다 붙을수있다고 가정하에 어디가 가장 괜찮을까요??
-
나도 내 현생을 좀 살아야겠다 운동도 하고 사람들도 만나고 또 과외 교재도 집필을 하고..
-
차 많이 막히려나 가기 존나 귀찮네 ㅅㅂ
-
오르비엔 좋은 사람 많다 히히 하면서 대충 올렸는데 갑자기 두려워짐 현실에서...
-
인생이힘들다..... 나데나데나데나데나데나데해줄미소녀한테 어리광 부리고 싶다
-
얼버기 2
9시에 잠들었는데 지금 일남 ㅅㅂ 4시엔 다시 자야지
-
이훈식 오지훈
-
사실 썸도 아니었던거같음 ㅜㅜ
-
시간이 약이래용 0
확실히 시간이 지나니 수능의 무서움을 잊게되는..
-
오지훈 개념완성 스텝1까지만 개념기출하고 이신혁쌤 현강 들어가도되나요? 0
스텝2 까지 꼭 수강하고 기출 풀어야 이신혁쌤 따라갈수 있을까요?
-
보고싶다 1
같이 살고 싶어 언젠가는 같이 살겠지
-
군대에서 하려고 하는데 ㄱㅊ음?? 근데 본인 4대역학 개못함 ㅋㅋ 재수강해야 함.....
-
9칸 0
이시점 라인 의미 없다는데 그래도 9칸이면 붙겠죠? 가고 싶어서 모의면접도 가고...
-
일본 애니에는 감동이 있다 가슴이 웅장해진다 진짜
-
10퍼에서 3분만에 2퍼됨
-
ㅂㅂㅇ 4
-
한달만에 완강 ㄱㄴ?
-
아직도 이해가 안된다 16
안읽씹의 심리
-
다들 그럼 뭐하는건지 쓰고나가셈
-
댓글 등의 반응은 현저히 줄어드는데 조회수는 개빨리 늘어남 ㅋㅋㅋㅋ 뭔가 있는 듯
-
중기:이거 불법입니다!
-
오르비가재밌는데말야
-
요즘 오르비는 다들 일찍 자는 바른 어린이들이라 3시에 하면 또 재미 없음 ㅋㅋ
-
영어 2,3 등급 차이 많이 심한가요? 예비 고3인데 그냥 영어 2등급까지는 띄울...
-
연애하고 싶다
-
고2인데 올해 모의수능 봤을때 물리3(찍맞1개) 지구5(실수 많이 함..서바 풀면...
-
.......
-
고3 때 김동욱 일클 조금 들었었는데 그때는 조금 추상적으로 느껴졌거든요(방식은...
-
진짜 오랜만에 하는 ㅇㅈ인 듯 ㅋㅋ 차피 어릴 때라 신상 털릴 일은 없어서.. 오랜만에 ㅇㅈ해봄
-
언매 0틀 87점인데 3등급 뜨면 진짜 저는 이 세상에서 존재하지 않을지도...
-
방금 그 뭐야 올렷던 사진 여기 넣어서 찾았는데 안나왔어요 미방 안했는데...
-
경희대 될까요?
-
저는 공부하다 까먹어버렸어요 공부를 열심히 해서 그런건 아니고 기억력이 안좋아서 까먹음
-
모기야 제발 3
잘라는데 앵앵거려
-
내전휴ㅡ번호어
-
아나타모~하야쿠낫테네에에에에~
-
뭔가 요즘 그냥 10
내 무능함에 삶 자체의 동력을 잃은느낌
-
ㅇㅈ 2
그렇습니다
-
킁킁
-
뭐지 진짜
-
다 열심히 연계 공부했는데 저 셋중에 하나도 안 나온 게 너무함 이동하는시간...
-
ㅇㅈ 6
영정사진 ㅇㅈ
-
ㅇ 2
-
95인지 97인지 잘 모르겠음 37이랑 41 틀렸는데 41을 2랑 3이랑 고민하다가...
-
팔로우 쌀먹을 시전하려는 나쁜 인간들!
-
당연히 수학황은 아니지만 낮은 등급대이신 분들꼐는 제가 겪은 시행착오가 조금이라도...
-
후회 하고있어요 3
우리 다투던그으날
함수를 바꾸는게 문돌이한테도 해당사항이 있을까요..? 어차피 해봣자 3차 4차일텐데
문과라면 ‘함수를 바꾼다’라기 보다는, 복잡한 상황이 나왔을때 ‘이 함수의 그래프는 분명히 쉬운 개형 - 기출에서 본적이 있는’라고 생각해 보면서 그래프의 개형을 그려보면서 접근하는게 좋아요. 칼럼의 포인트는 ‘평가원이 문제를 만드는 방식’을 생각하면 반드시 쉽게 풀릴것이다, 라는 것이에요. 시험장에서는 어렵지만 해설강의를 듣고 나면 쉽게 느껴지는 것이 그러한 이유입니다. 힘내요~
음..기출에서 본적있다 함은 뭐,,절댓값 함수 미분가능하면 중근 뭐 이런걸까요? 그걸로 복잡한거에서 중근 찾아서 빼고 이런식으로 하는건가..잘 감이 안잡히네요
나형 버전 칼럼은 나중에 따로 올려볼게요~
넵 감사합니다 !!
첨보는 칼럼인데 ㄹㅇ 도움되네요.... 문제내는 원리에서 근거가 있군요