미분을 하는 이유
게시글 주소: https://w.orbi.kr/00032311656
안녕하세요.
수학강사 이승효입니다.
오늘의 주제는,, "미분을 뭐하러 해?"
먼저 아래 문제를 봐주세요. 이번 9월 모평 가형 18번입니다.
나형 학생도 풀수 있는 문제입니다.
나형이라면 '호옹~ 우리가 풀수 있는 문제도 가형에 나오다니,,'
가형은 '어라, 문제가 좀 다른데?' 라는 생각이 들지요?
네, 가형은 아시겠지만
문제에 출제된 f(x)는 저런 형태였지요?
(나형 학생들도 좌절하지 말고 끝까지 읽어보면 도움이 될거에요. ^^)
그런데 처음 함수처럼 f(x)가 쉬운 형태(다항함수)로 나오더라도,
이 문제의 해결전략이나 풀이방법은 전혀 달라지지 않습니다.
여기서 우리가 알아야 할 것은
평가원에서 함수추론 문제를 만드는 방식
이에요.
평가원에서는 종종 복잡한 (또는 복잡해 보이는) 함수의 식을 던져주곤 합니다.
수학 고정 1등급의 고인물수라면
'나에게 어떤 함수를 던져주더라도 전부 미분해 버리겠어
(심지어 두번미분)'
라는 마인드로 함수를 탈탈 털어버린 다음에
그걸 이용해서 문제를 풀어도 시간이 모자라지 않겠죠.
그렇지만 평가원 문제 중에서
오로지 식으로만 풀어야 하는 일부를 제외한 대부분의 함수 문제는
복잡한 함수를
"같은 성질을 가진 매우 쉬운 함수"로 치환하더라도
같은 방식으로 풀리도록 문제가 성립합니다.
왜 이런 현상이 벌어질까요?
문제를 제작한 경험이 있는 분들은 잘 알고 계실겁니다.
문제를 만들때, 밑도 끝도 없이 복잡한 함수 식부터 세우고
문제를 만드는 것이 아니라
1. 특정한 교과서 개념을 확인할 수 있는 상황을 설정하고
2. 그 상황에 적합한 함수 식을 만든 다음
3. 만약 문제의 난이도를 올리고 싶으면
같은 성질을 갖는 좀 더 복잡한 함수로 업그레이드 한다.
이런 식으로 문제를 만드는 것이 일반적이기 때문이에요.
즉, 이렇게 복잡해 보이는 함수 문제에서 중요한 것은
1. 함수의 중요한 성질을 빨리 캐치한다.
2. 쉬운 함수로 바꿔서 그래프의 개형을 추론한다.
3. 개형을 이용하여 문제를 아주 쉽게 푼다.
인 것입니다.
이러한 원리는 이번 18번에만 활용되는 것이 아니라
평가원 기출에서 폭넓게 활용되고 있답니다.
기출분석이 끝나고 암기까지 된 학생이라면
이번 f(x)안에 있는 로그함수와 이를 이용한 g(x)의 정의가
2018학년도 6평 30번의 재활용이라는 걸 바로 캐치해냈을거에요.
주어진 함수의 중요한 성질(대칭성, 아래로 볼록)만 파악해서
f(x)를 2차함수로 바꿔 버리면 쉬운 수학2 문제로 바꿀 수 있죠.
다시 원래의 질문으로 돌아가서 글을 마치려 합니다.
미분을 뭐하러 해?
미분은 함수의 성질을 모르니까 한다.
예를 들어, 3차함수의 식만 보면 이 함수가 극점을 갖는지 안갖는지
어디서 증가하고 감소하는지 알수가 없죠.
즉, 숨은 성질을 찾는 함수의 해석도구가 미분인 것입니다.
이번 18번 문제에서 주어진 함수는
1. 원점을 지나고 양수구간에서 증가하는 함수이다.
2. 구간 (0,1)에서 함수는 1보다 작다
-> 10제곱하면 미친듯이 더 작아진다.
라는 두 가지 성질을
미분이라는 도구 없이도 충분히 찾아 낼수 있습니다.
미분의 꿀팁 중 하나는, 신기하게도,
미분을 쓰지 않는 것이에요. (!)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수학 땜에 힘들라나..
-
인증 메타 0
돌릴때 한번..흠..
-
굳이 그래야 할 필요가 있을까
-
이게 실채점성적 뜨면 백분위가 어떻게 될지 모르기도 하고 저는 인천대자전이 안정으로...
-
"서로 끌어안고, 세계의 입맞춤 받으라"…200번째 연말 맞는 '합창' 0
“모든 인간은 형제가 되노라. 수백만의 사람들이여, 서로 끌어안아라! 전 세계의...
-
“수업 강제로 듣고 울고있다”…동덕여대 게시판에 전해진 사연 4
동덕여대 총학생회 학생들이 남녀공학 전환에 반대하며 건물 점거와 수업 거부를...
-
자취할까 흠냐뇨이
-
간호 / 기타 보건계열 / 교대 / 사회복지 / 사범대 등 학과를 성적만 보고 쓰는...
-
저만 좀 짠가요? 등수랑 일치하지 않는 느낌
-
아쿠아 다시만나기위해서 계속낳다보면 너올수도??
-
중약 논술 3
국어 1등급, 지구1등급은 죽어도 안되나요ㅠㅠ 둘다 1되면 중앙대 약대 논술...
-
헌혈 무사히 완료 30
-
미친거 아닌가 와 사람인가 진짜 교수님은 제자들 졸연 때문에 ??...
-
나도 캠퍼스에서 이런 노래 막 머리 속에서 흘러나오면서 여자친구랑 꽁냥꽁냥 거리고 싶다 ㅠㅠ
-
고속기준 누백 15
고려대가3.95-3.98 연세대가3.70인데 이정도면 자연대 붙을만한가요??
-
제목표 변천사 2
고1: 건대생명 고2: 약대 고3: 경희대/ 이대 생명 결과: 홍대공대생 지금목표는 모르겟음
-
수능 때 부모님께 비활 풀어달라하기 뭐했었음ㅋㅋ 드뎌 간다 빠대 이렐 첫 판ㄱㄱ
-
방금 가족 피자 먹는데 나 혼자 샐러드 먹어서 살짝 슬펐음 실채랑 가채랑 다를까봐...
-
모든것에 대하여 5
이데아의 존재 p : 현실에 존재하지 않음 q : 마음속에 있다 exists :...
-
경인교대 21학번 수시로 간 친구있는데 경교 아직 서성한급인줄 알고있음 근데...
-
진짜 젊은 나이에 암으로 죽으시는 분들 은근 흔하던데ㅠ 그것도 30대 20대......
-
D-356 공부 0
-
800기 초반대인데 우리때는 22개월이라서 거의 미달이었는데. 물론 본인 입대하고...
-
고2때 물화지 선택했구 고3때 물2화2 선택했는데 12월달부터 생1 공부해서...
-
자기가 인생2회차인줄 아는 여자가 많음
-
우리는 중학생때 처음 '함수'라는 것을 배웁니다. 그러나 전 중학생때 배우는 함수의...
-
그냥 25커리로 청강해도 되죠? 수학이 거기서 거기니깡..
-
ex) 우리대학은 수학 체감난이도 반영을 위해 1컷을 84점이라고 가정하고...
-
평가원 #~#
-
왜냐면 씨팔 내가 84니까!!!!!
-
이제 레포트 하나만 남았다.....
-
제 누백이 어느정돈진 어디서봐야되요? 진학사에선 못보나요?
-
설대식 378.2점 15
설대 아무곳이나 지를까 고민중인데 추천받음
-
수능 80(독서 다 맞고 문학에서 다 나감..)인데 김승리 들을까요? 강민철...
-
존맛탱
-
세지vs한지 2
둘중에 뭐가 좋을까요
-
요즘 느끼는거 3
ㅇㅇ가 좋다 이말이 아무런 노력 없이 내 귀까지 들어왔다는거는 이미 꿀을 다 빨았고...
-
노동의가치를저하시키고 사회에는일절도움안됨 그냥갑자기코인하다가 그런생각이듬
-
뭐하지 1
뭐하지뭐하지
-
선착순 2명 16
천덕씩 추합 불가
-
수학 등급컷 어디가 더 정확한가요?
-
불편해죽겠네
-
확통 2컷 투표 0
투표
-
캬캬캬 라이덴 렙업시텨줘야지
-
총괄 선택자수 1명 예정 ㄷㄷ
-
선착순3명 만덕 20
역 지하9층으로 집합
-
ㅈㄱㄴ
-
고전시가 질문 6
굳건한 바위가 아니라 끈으로 형상 했다고 해서 틀린거라고 생각했는데 답지에는 바위가...
함수를 바꾸는게 문돌이한테도 해당사항이 있을까요..? 어차피 해봣자 3차 4차일텐데
문과라면 ‘함수를 바꾼다’라기 보다는, 복잡한 상황이 나왔을때 ‘이 함수의 그래프는 분명히 쉬운 개형 - 기출에서 본적이 있는’라고 생각해 보면서 그래프의 개형을 그려보면서 접근하는게 좋아요. 칼럼의 포인트는 ‘평가원이 문제를 만드는 방식’을 생각하면 반드시 쉽게 풀릴것이다, 라는 것이에요. 시험장에서는 어렵지만 해설강의를 듣고 나면 쉽게 느껴지는 것이 그러한 이유입니다. 힘내요~
음..기출에서 본적있다 함은 뭐,,절댓값 함수 미분가능하면 중근 뭐 이런걸까요? 그걸로 복잡한거에서 중근 찾아서 빼고 이런식으로 하는건가..잘 감이 안잡히네요
나형 버전 칼럼은 나중에 따로 올려볼게요~
넵 감사합니다 !!
첨보는 칼럼인데 ㄹㅇ 도움되네요.... 문제내는 원리에서 근거가 있군요