자작문제 하나 처음으로 올려봅니다.
게시글 주소: https://w.orbi.kr/0003237359
처음으로 올려봅니다. 유형평가나 난이도 평가도 부탁드립니다. ^^
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
특정되서 오르비사람들이 저의진짜모습을알게될까 무서워요...
-
서버 터진다 이런 건 걍 말도 안 되는 소리고 ㅋㅋ 걍 실친이 내 오르비 계정 알게...
-
왜 결말이 ㅂㅅ같냐 강연금같은 명작은 없는건가… 걍 럽코 적당한 거 보는게...
-
얼굴ㅇㅈ하면 8
념글 보내주나요?
-
댓글 20개 이상 찍히면 대존잘인거임 ㅇㅇ 물론 여성분들은 대존예까진 아니어도 그정도 찍히긴 함뇨
-
옯만추 딱 5번해봄 11
5명다 짤녀 닮은 미소녀였음
-
이공계 질문받아요 34
슬슬 학교/학과 선택 질문이 좀 보이네요 저는 서울대 공대/자연대에서 썩고 있는...
-
우하하 4
새르비 재밌누
-
한완수 ㄱㅊ? 5
재종 들어가기전에 한완수 하려는데 괜찮음? 수학 3따리 턱걸이라 걍 노베임 교과개념부터 할까요?
-
댓글 너무 달려서 오르비 서버 터질까봐.
-
념글보내줘 6
갈거업ㄱ잖아딱히
-
와 화력개빡세네 2
인증하면 세상사람들 다알겠다
-
삼수망한후기 16
삶에대해다시생각하게됨 사소한것에감사하게된 게아니고그냥계속화남 억울함 사수하고싶음...
-
ㅇㅈ 16
펑
-
멍청한사람이싫어요 18
그래서내가싫어
-
나때는 악뮤온다
-
난 그냥 공군 안가야지 10
여붕이라 안가도 됨 ㅇㅇ
-
2학년 모고 과탐을 지금까지 계속 화생으로 봤는데 수능때 도저히 화학 볼 자신이...
-
책 읽어야지 6
도 공공도서관에서 대여가 가능하더군요. 너무 비싸서 무료로 대여해 주는 공공도서관...
-
ㅇㅈ 13
아까 퇴근하면서 찍은거 ㅇㅈ 카메라 풀린거 너무좋고
-
총수라는 말은 12
야하다고생각해요
-
책 ㅁㅌㅊ 6
집에한가득w 시선으로부터는 사인도잇어요 알라딘에서냅다업어옴
-
ㅇㅈ 3
여친여치니 ㅇㅈ 플로버분들은 개추를 눌러주세요
-
잠은 좀 이따 잘 듯 싶어요
-
짜증나... 8
갈래
-
난 처음들어보는데 다들 아네..
-
책읽어요 3
재밌을거같아요
-
모썩철썩! 애응님이 그립네요 뭐 재르비해서 이 글 보고 있을 수도 있겠지만
-
아니 뭔가 별로 긁힐만한게 아닌 거 같은데 나도 모르게 묘하게 긁힘
-
남1여1해봣는데 둘다잘맞아서아직도실친으로지냄
-
ㄷㄷㅇㄷ 6
ㅓㅔㅠㅔ
-
진짜 고민됩니다 예비고3이고 가고싶은 대학이 정시로만 갈수있어 정시 준비중입니다....
-
그냥 찍는거? 아님 잘 맞춤?
-
20분 내에 개념 다 풀고 10분 내에 도표랑 도수분포표 풀기 도전!
-
지금 인사하면 받아줌? 24
-
씻고 옴
-
무려19시즌이엇다구 나보다오래햇다고??? 현생살아... 나도가끔오잔아
-
집 도착 9
-
이미지 써드림 go 78
귀찮아지면드랍함
-
암기에는 도가 튼 표본과 강사진을 국경같은 지엽으로 변별하는 것은 이익이 크지 않음...
-
서울대식 400 0
어디정도 됨? +내 점수가 어디서는어메가는 399.5이고 텔그에서는 404.5인데...
-
아침에 글을 한번 썼지만 저는 지난 달에 로컬 회계법인으로 이직했고 올해 대거...
-
질답받아요 5
신체 주소 신상은 알아서 PASS하겠음
-
[사설]그냥 대학 장학금만 늘릴 게 아니라 졸업장 제값 하게 해야 0
교육부가 2025학년도부터 국가장학금 지급 대상을 중산층 자녀에게까지 대폭...
-
근데 정작 교육서비스 받는 게 ㅈㄴ 힘들다는 거 가격이 씹사기라 걔들 입장에서는...
-
지금 텔그 1
서버터진거맞나요
-
fancy
-
질받해요 14
-
누군가가 선넘질은 해달라고 했는데 여르비에게 님 ㅂㅈ 넓어요? 라는 질문을 한 거죠...
불금 재미난 문제 투척 감사요~ 근데 함수가 -n<=x<=n 에서 정의가 되어야 하는데 x=0, 1에서 정의가 안 되는 듯 합니다.
아마 f_n 을 왠지 x=0에서 연속이 되게 정의하시려고 했다고 믿고 풀어보면.. (x=1에서의 정보도 필요하지만)
f_n (0)=0
ㄱ. f_1 (0)=0이고, x=0에서 극댓값 1개이므로 참. 01 극한은 -무한대.
ㄴ. n>=2에 대해서는 f_n이 x>=0에서 함숫값 0부터 출발해서 쭉 감소하다가 x=1의 좌측에서 -무한대로 감소. x=1의 우측에서 +무한대에서 시작해서 쭉 감소해서 x=n까지 쭉 감소해서 0이 됌. a_1 = -2, a_2 = 3, a_3 = 2 , ... , a_n = 2. 따라서 참.
ㄷ. x=+-1에서의 함숫값을 어떻게 정의하느냐에 달리긴 했지만, 맞는 것으로 판단됌.. 참.
미분해서 개형 그려보고 기울기가 양인지 음인지 판단하려면 계산 좀 해야 해서 난이도는 어려운 4점이 아닐까 싶습니다만.. 근데 ㄷ이 오히려 쉬운 것 같네요ㅎ 이거는 미분 안 하고 식만 봐도 나오니까요.
역시 syzy님 ㅋㅋ 열정적이심 ㅋㅎ
아 금요일인데 오늘은 힘이 좀 남아도네요..ㅎㅎ 어라 제가 쓴 글 다시 보다 보니 a_1 = 2인데 -부호 붙여놨네..ㅋ
아... 그러네요. -n에서 n까지 정의된..........이라고 써놓고 정작 x=0. 1,-1 에 대해선 언급이 없었네요. 정신을 어디다...ㅠㅠ
음.... x=0일때 함수를 연속으로 두려했던것 맞구요. 1과 -1일때는 그냥 빈채로 두려 했는데.... 정작 아무런 언급도 없었으니.... syzy님 지적해주셔서 고맙습니다.