【바보의 수학-문제풀이】 2019 수능 수학 가형 30번 분석
게시글 주소: https://w.orbi.kr/00032578175
안녕하세요, 입시크릿입니다.
이번 칼럼에서는 2019년에 실시된 2020학년도 수능 수학 가형 (이과) 30번 문제에 대한 ebs풀이와 함께 저의 조금 다른 풀이방법을 제시해보겠습니다.
단순한 해설지는 여러 다른 사이트에서도 충분히 확인할 수 있으므로, 단순한 풀이방법을 넘어 왜 이렇게 문제를 푸는지, 논리적 사고를 하는 방법을 알려드리겠습니다.
저의 이전 '바보의 수학' 칼럼에서 알려드린 수학 공부법을 토대로 하므로 안 읽어보신 분은 한 번 읽고 오시는 것도 도움이 될 것입니다.
(더많은 칼럼과 공부법을 https://blog.naver.com/epsecret 에서 만나보세요)
먼저 30번 문제와 함께 해설지에서 제시한 풀이방법을 살펴보겠습니다.
해당 풀이는 ebsi에 업로드 되어있는 30번 해설지의 일부입니다.
답지를 보지 않고 문제를 푸는 학생도, 답지를 봐도 이해를 하기가 어려운 학생도 있겠지만,
대부분 학생의 경우 "풀이가 이해는 된다. 근데 어떻게 저렇게 똑똑한 생각을 할 수 있는지 모르겠다. 비슷한 문제가 나오면 못풀것 같다." 라는 생각을 합니다.
따라서 과정 하나하나를 분석하며 풀이방법을 생각해내는 근거가 무엇인지, 어떤 방식으로 문제를 풀고 답지를 분석해야 실력이 늘 수 있을지 알려드리겠습니다.
우리가 첫번째로 생각해 내야하는 것은 ㄱ,ㄴ식입니다.
"두 함수가 오직 한점에서 만난다." 라는 것은 미적분에서 매우 많이 쓰이는 성질이죠.
두 함수가 오직 한점에서 만나는 경우에는,
1. 함수값이 같다.
2. 해당 점에서의 미분계수가 같다.
를 통하여 ㄱ,ㄴ을 충분히 유도해 낼 수 있습니다.
이 두가지를 생각해내기가 힘들다면 문제를 풀며 응용력을 기르는 것보다는 그전에 개념공부를 하는 것에 더 비중을 두시는 것이 좋습니다.
이 30번문제의 진짜 어려움은 이 다음에 있다고 생각합니다. 아래 풀이를 읽어보기 전에 먼저 스스로 문제를 풀어보는 것을 추천드립니다.
풀이를 읽으면 이 방법이 모순이 없는 올바른 풀이라는 것은 이해할 수 있지만, 최상위권을 제외하면 답지를 보면서 의문점이 생기는 것이 당연합니다.
1. 저는ㄱ,ㄴ을 구한 다음에 무엇을 해야할지 모르겠던데, 갑자기 ㄱ의 식을 t에 대해서 미분한 이유가 뭔가요?
2. 저라면 ㄱ,ㄴ을 구한 후 두 식을 연립할 것 같습니다. 갑자기 ㄴ도 아니고 ㄱ을 왜 미분할까요?
3. 가만히 있는 3t2을 더 간단한 식도 아니고, 오히려 복잡하게 t3*(3/t) 으로 바꾸는 이유가 뭔가요?
맞습니다. 탁월한 일부 학생을 제외하면 ㄱ을 미분해야겠다는 생각이 잘 들지 않습니다.
저 역시도 마찬가지였으며, 항상 식을 유도한 이후에는 내가 유도해낸 수식이 어떤 성질이 있는지 살펴봐야 합니다.
ㄱ,ㄴ 두식을 보면 우변이 정확히 일치하고, 좌변에 공통적으로 t3이 있습니다.
즉 다음 과정은 2번 질문에서 말씀하신 그대로 공통인수를 최대한 지울 수 있도록 ㄱ,ㄴ을 연립하는게 맞습니다.
마찬가지로 이번에도 식을 변형했으므로 내가 유도해낸 식이 어떤 의미를 가지고 있는지, 특별한 성질이 있는지 다시 한번 살펴봐야 하겠죠?
ln x를 미분하면 1/x 입니다. 즉, 좌변을 미분하면 우변(-t이므로 부호는 바뀝니다)이 됩니다.
이 성질을 이용하면 첫번째 의문점, 왜 ㄱ을 미분하는지 알 수 있습니다.
ln을 미분해도 위 성질에 의하여 다시 문자를 통일시킬 수 있기 때문에, ㄱ식을 미분하면 문자가 통일되어 식이 매우 간단해지는 것이 확실해졌기 때문입니다.
문제에서 준 식만을 바탕으로 바로 ㄱ을 미분하는 것은 쉽지 않습니다.
식을 다양하게 변형해보며 올바른 다음과정이 무엇일지 스스로 생각해 보아야 합니다.
해설지에서는 올바른 풀이를 제시하지만 그것을 생각해내는 방법을 가르쳐주지 않습니다. 그렇기 때문에 단순히 단순히 답지만 봐서는 실력이 늘지 않는 것입니다.
마지막으로 세번째 질문에 대한 답변을 드리면, 저는 출제자가 이미 답을 알고 있기 때문에 이러한 풀이방법을 선택했다고 생각합니다.
저희는 답을 미리 아는 상황이 아니기 때문에, 똑똑한 사람들을 제외하면 바로 풀이처럼 생각하기는 어렵습니다.
위의 제 풀이가 기존 해설지보다 1~2줄 더 복잡할 수 있겠지만, 굳이 답지처럼 변형시키지 않아도 ㄱ을 미분해서 식을 쭉 정리하기만 해도 문제를 해결할 수 있습니다.
반드시 3t2을 t3 x 3/t으로 변형할 필요는 없다는 것이죠.
이렇게 킬러문제로 유명한 수능 수학 30번 문제라 해도 하나씩 하나씩 따지다 보면 크게 어렵지 않게 문제를 풀어낼 수 있습니다.
저의 풀이 방법과 문제 풀이 이론이 여러분께 도움이 되었길 바라며 이만 마치도록 하겠습니다.
감사합니다. :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
10일 기다리느라 숨막혀 죽는줄 알았다
-
난 이번에 삼수하고 그냥 그럭저럭의 성적을 받았어 3번의 수능을 치르면서...
-
응애 나 애기
-
의대논쟁 알바노 1
응 어차피 못가 내알바아니야~
-
신기함
-
마크 모드 추천 좀 10
서바vs크리 머가 더 재밌음 둘 다 해봤는데 크리는 건물 하나 지을 인내심도 없고...
-
상명대 논술 0
2명 뽑는데 예비3번 가망없을까요 ㅠㅠ
-
서럽다씨발 0
집에 돈도없는데 이제
-
싸울 힘이 없다
-
여름에 받아서 2급 나왔었는데, 그땐 시력이 안 좋을 때라 0.2 0.2...
-
의대 갈 생각인 최상위권은 이상한 사명감 같은건 개나 줘버리고 치대 가서 편하게...
-
예체능이고 국영한탐만 반영해요..! 만약 탐구 하나는 무조건 1 맞아야 한다면...
-
클스마스 한 달 남았는데 벌써 알고리즘에 캐롤 뜨네 1
아 랄로 연말정산 언제 올라와
-
재미를 북돋아줄 빌런을 내놔라
-
근데 갈 친그가 없어서 울어
-
계획대로 덕코 줍줍 11
-
프장에 너무 내리 꽂으면 수익실현 하려고 했는데 말아올리면 시드 더 투입하게
-
예비고3인데 윈터스쿨 아직 마감 안되었나요? 그리고 얼마인가요?
-
의대 2126학번 모집정지 가능성 있나요??
-
논리실증주의자는 예측이 맞을 경우에, 포퍼는 예측이 틀리지 않는 한, 0
논리싫증주의자는 관심이 없다
-
히히히힣
-
꼴값 1
얼마지
-
허수 탈출 기원 영어는 할 예정
-
방 1개랑 방 안에 화장실만 따로 있으면 좋은데 주방이나 세탁실 이런거는 공용으로...
-
어떻게 볼 수 있나요?
-
어디가나 여론 좋아요 같은거보면 그들이 숨어서 여론선동 하는느낌
-
군수생 달린다 1
사인을 미분하면 코사인이라니 신기하군요
-
그냥 좋아하는 과목 할거임 그게 최선인듯
-
1일1영화 재밌는거같음뇨
-
따라서 폭발을 만들면, 미래를 아는 것이 됩니다
-
뭐먹지
-
대단하단 말이예요 마치 그 이익집단의 전 회장 같단 말입니다
-
아무것도 하기가 싫어요
-
고대어디든가고싶은데 쓴 과 폭발하면 ㄹㅇ 슬플거같음뇨
-
아배고팡 0
후엔
-
"나츠키 스바루"
-
예쁘다는 말 2
다들 여사친한테 서슴없이 자주 하는 편?
-
그리고 정형외과 아버지가 아들보고 의대가지 말라고 했던 이유
-
언미물2화2 98 96 2 45 40 설대식 표점으로는 진학사기준 416.9나오고...
-
홍대한바퀴 씹덕코스 돌음 문구점 > 올리브영 > 저녁> 원신카페> 굿즈샵탐방>...
-
오늘 걸음수 1
-
글 싹 지우고 닉변했네
-
표본분석으로 판단될거였으면 빵꾸가 안일어나겠죠? 어떻게 생각하시나여 정시영역...
-
물리 선택 후 6개월간 매번 4등급이 떠서 9월에 늦게 생윤으로 틀었고 결국...
-
이 성적인데 쓸수있는 인서울 농어촌 정시가 있을까요..? 아무곳이나 서울로 가고 싶습니다
-
굿바이노
-
꿈이없음뇨 6
막연하게 메디컬 이런 꿈도 없음 그냥 공부 못해서 문과 왔음 어쩌다보니 좀 잘해짐...
-
선서
-
50은 기본인가? 오르비에서 유명한 분들 컨설팅 얼마정도에 하나요
-
어차피 수동차 탈일없는데
첫번째 댓글의 주인공이 되어보세요.