증명을 하는 이유
게시글 주소: https://w.orbi.kr/00036516478
칼럼을 겸한 쪽지 Q&A 기록용입니다.
도움이 되시길.
Q. (학생의 질문)
"증명하는 과정이 수학에서 고난도문제를 대할 때 어떤 효력을 발휘하나요?"
A. (이승효의 대답)
증명이라는 것은,
교과서에 나와 있는 어떤 정리가
참이 되는 이유입니다.
예를 들어, 피타고라스 정리가 있죠.
그게 참인 이유가 증명이에요.
이걸 배우지 않은 상태에서
혼자서 증명하는 것은 어렵습니다.
증명은 과거에 누군가
엄청나게 똑똑한 사람이 한 것이기 때문에,
그걸 우리가 짧은 시간안에 떠올린다는 것은 어렵겠죠.
그러한 증명이 꼬리에 꼬리를 물고 연결되면서
수학이 발전해 온 것이고,
고등학교 교과서는
그러한 연결에 의해서 만들어진 유기적인 내용입니다.
예를 들어, 수학1, 수학2, 미적분
순서대로 이어지는 것에는 다 이유가 있는 것이죠.
증명하는 과정이
수학에서 고난도 문제를 대할 때 어떤 효력을 발휘하는가.
1) 증명에는 발상이 있다.
고난도 문제를 풀어봤다면
알겠지만 여러가지 발상들이 필요합니다.
도형문제라면 어떠한 상황에서 보조선을 어떻게 긋는다,
함수의 식이 주어졌다면 어떻게 한다, 등등.
문제만 풀어온 학생이라면
이러한 발상을 문제를 풀어야
배울 수 있는 거라고 생각하겠지만,
사실 수능에 나오는 모든 발상은
교과서 증명 안에 다 들어있습니다.
그것을 바탕으로 수능 문제를 출제하니까요.
제가 오늘 쓴 글에서 미분을 MRI에 비유했는데,
글 중간에 보면 MRI검사를 수백명 해보면서
인체의 신비를 깨달아가는건 어려운 일이라고 했죠?
증명을 배운다는 것은 마치
살아있는 인간을 배우기 전에
해부학을 배운다는 것과 같습니다.
이미 과거에 다른 사람들이 발견한 정보들을 바탕으로
교과서적인 원리들을 먼저 배우는 것이지요.
따라서 교과서 정의, 정리, 증명에서 배운 내용을 바탕으로
기출 문제를 풀게 되면,
문제마다 새로운 것을 배우는 것이 아니라,
문제를 풀면서 교과서 내용을 확인하게 되는 것이지요.
그러한 과정을 기출 분석이라고 합니다.
따라서 기출을 보기 전에
교과서 내용을 정확히 알고 있는건 매우 중요해요.
2) 증명에는 정의가 있다.
증명을 해야 하는 두번째 이유.
미분가능한 함수는 연속함수이다
라는 것을 증명할 수 있나요?
이건 실력지상주의 1주차에서 수업한 내용인데요.
대부분의 학생은 이걸 증명할 수 없습니다.
왜냐하면 미분가능한 함수와 연속함수의
정의를 정확히 모르거든요.
느낌으로만 알고 있고 식으로 정확히 표현할 수 없다면,
매우 쉬운 한줄짜리 증명임에도 불구하고 할 수 없습니다.
그럼 정의를 알고 있는 것이 왜 중요한가,
예를 들어 어떤 함수가 미분가능함을 보여라,
라는 문제가 있을 때 대부분 학생은
1.연속이다. 2.좌미분계수=우미분계수가 같다.
라는 순서대로 문제를 풉니다.
이건 아주 대표적인 잘못된 풀이라고 할 수 있는데,
정의를 잘 모르기 때문이구요,
저렇게 풀리는 3점짜리 문제는 문제가 없는데
4점짜리 문제로 가게 되면 해결이 안되는게 생겨요.
문제풀이의 접근방법은 반드시
정의->정리 순서대로 나아가야 하는데,
오개념으로 풀다보면 접근 자체가 안되는 경우가 생깁니다.
3) 증명에는 논리가 있다
증명을 해야 하는 세번째 이유.
직접 증명을 써보면 알겠지만,
아는 내용이라도
논리적으로 설명하는 것이 쉽지가 않습니다.
그건 학생들이 아직 논리적 사고력
또는 표현력이 부족하기 때문이죠.
교과서에 있는 증명들은 매우 간결하면서도 논리적입니다.
복잡한 증명은 고등학교 교과서에 나오지 않기 때문에
누구나 이해할 수 있는데,
그걸 자신이 직접 해보는건 쉽지 않아요.
강사가 설명하는 내용을 들으면 이해는 되지만
똑같이 설명해 보라고 하면 쉽지 않은것과 같은 이유입니다.
즉, 논리적 사고력을 키운다는 것은 다른게 아니고,
연습입니다.
수학은 그것을 연습하는 학문이에요.
고등학교를 졸업하면 미적분이 쓸모가 없을 수도 있고
대부분의 성인은 수학을 잊어버리지만,
중학교까지만 다닌 사람과 고등학교까지 수학을 배운 사람이
논리적 사고력에서 차이가 나는 것은 수학적인 연습을 했기 때문입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아오 삼겹살에 2
소주 마렵노
-
수학여행 야심한 밤에 초성고백받아서 ㅈㄴ 두근거렸는데 ㅅㅂ 장난친거였음 그 뒤로...
-
외모랑 지능 둘다가졌어
-
GOAT 영향력 무엇임뇨..
-
니남친 썰 11
중딩때 길가다가 여자무리에서 한명이 나보고 번호달라는거임 어버버댔는데 갑자기...
-
외모랑 학벌중에 3
뭐가 더 중요하다고 생각하시나요? 연옌급으로 이쁘거나 잘생긴 외모 vs 수능만점 이렇게 비교했을때
-
조교 지원 2
조교 지원하고 싶은데 보통 조교 지원은 어떤 방식으로 하나요??
-
[칼럼] 2511 물2 주요문항 해설 + 앞으로의 학습 방향 8
얼마 전에 치루어진 25 수능에 대한 총평과 주요문항 손풀이, 그리고 앞으로 물2에...
-
글삭은 귀차느니까
-
안녕하세요 3수끝에 광명상가 라인 공대 오고 이번 년도에 1학년 끝난후 12월에...
-
ㅇㅈ하면 안 되겠다
-
23수능 미적 백분위 100 24수능 미적 백분위 99 25수능 미적 백분위 99...
-
못 하겠다 3
어떤 ㅁㅊ놈이 더럽게 많이 써놨넹
-
9천개만 밀면..
-
자야지 3
-
아
-
아나 개 화나네 왜팔았지
-
ㅈㄱㄴ
-
열등감 폭발
-
비많이오네 14
비오면 기분 너무 다운되는데 큰일이다..
-
산책하고 잠뇨 8
ㅂㅂ
-
갤주쪽지 4
이게 왜 벌써 2년???????
-
팔로워 다 날라가서 속상함
-
인터넷을믿지마 5
(대충 인터넷은 다진짜다짤)
-
도태남이라 울엇뇨
-
ㄹㅇ 개에바임뇨
-
ㅇㅈ 36
얼굴은 전에 올렸음요…
-
생윤 강사 추천 4
김종익 , Zola 쌤 중에 생윤 강사 추천 좀 해주세요 ㅜㅜ 종익쌤 오개념 논란이...
-
대학교다님
-
맞팔하실분들 4
저 은테 만들어주세요
-
. 이세계 게이트타고 환생합니다.
-
대학전쟁 댓글 보다보면 사람들이 대학 간판 너무 신격화 함 3
쟤들은 서울대 연고대라 똑똑한 게 아니라 그냥 똑똑한 애들이라 똑똑한건데........
-
망햇뇨
-
벌여놓은 모든 일이 수포로 돌아가는
-
요즘 잠을 못 잠…
-
항상 주장해오던 바입니다.
-
사실 저 키 1cm 아님뇨..
-
기차지나간당 8
부지런행
-
수학 커리 4
수1은 다 까먹어서 노베수준이니까 양승진 2025개념코드, 쎈으로 베이스 잡고...
-
계속 보게 됨 그리고 나중에 게이로 보였을까 걱정함 님들도 그럼?
-
25뉴런 강의 다 폐강되면 책만 남는 거 아님? 내용 많이 달라지면 집에있는 뉴런...
-
실화뇨
-
문과 숙국숭세단 1
어디가 젤 나을까요 어차피 삼반수 할 거긴 한디
-
다들 잘생겼네 2
진심임
-
시대것만 해도 주간지(모든 학원에 있음), 브릿지, 액셀러레이터, 서바,...
-
ㅇㅈ재탕 10
•.•
hoxy... 새로운 npc의 탄생...?
헉 진짜네
증명은 그럼 독학하고 싶으면 학교에서 썻던 교과서로 하면 될까요?
네~ 교과서에 다 나와있고 독학이니까 설명이 필요하면 유튜브 검색해도 나올거에요.
선생님 칼럼보면서 항상 많은 도움 받고가요... 좋은 글 감사합니다!
도움이 되었다니 기쁘네요. 감사합니다.
선생님 그러면 미분가능성은 어떻게 해야 맞는 풀이인가요?
미분계수가 존재하는 것을 미분가능이라고 해요.