[오개념 탈출하기] '역함수' 누구냐 넌!
게시글 주소: https://w.orbi.kr/0003750730
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
유튜브에 이런말 많아서 궁금
-
4컷 기준이 되나? 5컷?
-
아웃라이어도 보면 수시 출신임 ㅇㅇ;; 우리학교 얘기긴 하지만
-
죄송합니다죄송합니다 다음부턴 꼭 출처 확인하고 글 쓰겠읍니다
-
안녕하세요 3
쓸 글이 없네요
-
엄빌리버블 엄청나 엄메이징 ㅋㅋㅋㅋㅋㅋ 엄 뒤에 - 붙인거땜에 엄ㅁㅁㅁㅁ메이징 하네요
-
제곧내
-
뭐가 더 어려웠나여? 23때도 화작 83떠서 백분위 68떴는데 25는 화작 80에...
-
이거 뜨면 탐구컷 알 수 있죠? 별개로 맞팔9 님만오면 은테
-
미적 1틀 77 0
30번 틀린 77점 2 가능성 있나요....
-
의대 정원 사실 진짜 조금 늘어도 수업듣기 힘들거임 8
의대뿐만 아니라 메디컬과 대부분 보통 정원에 따라서 강의실만듬 미니의대는 강의실...
-
다 글삭해서 특정시간대에 내글 만 연속으로 5개쌓인 경험있음
-
진짜 카르텔은 3
공부를 너무 잘해서 컷을 올리고 나같은 사람들을 죽이는 당신!
-
2d는 손대지마라 제발 11
내 이상성욕 충족할수 있는곳은 2d뿐이란 말이다...
-
성적표 나오기 이틀전인거 알지만 불안해서 다시 여쭙니다.. 혹시 이 성적에서 국어...
-
BBC 좋네 0
이런식으로 타임라인으로 기사들을 정리해줌 영어공부할 겸 이거나 봐야지
-
2컷 제발제발 0
미적 77 27,30틀 언매 85 매체1틀 3합5 맞추게 제발 22를 주세요 제발
-
최상위권들 의대못가면 치대라도 갈것같은데. . . 이미 기울어진 운동장
-
친구가 저기가 목표인데 정보를 아예 버리는 것 같은데 신기하네요
-
손윗사람과 2
6시간 동안 말 안하고 둘이 있는데 미칠거 같아요
-
밐짤 투척 3
카와이~
-
‘남녀공학 전환 반대’ 동덕여대 학생들 23일만에 본관 점거 해제 7
‘남녀 공학 전환 반대’ 시위를 해온 동덕여자대학교 학생들이 23일 만에 본관...
-
화작 1틀 89 3
과연 3등급이 나올것인가??
-
79 78 77 중에 걸릴 확률 없음?
-
별 이야기 안들리는거 보면
-
큰일남
-
콱
-
47?48?
-
메디컬,최상위권대학들 빼면 정시 지금처럼 하겠죠? . . .
-
비빔참치마요를 저주한다 11
우에엑..... 존나 짜
-
국어 인강 추천해주세요. 등급대는 낮은 2등급 정도 됩니다.
-
4의 규칙 미적분 1~11,18~21 1단원 끝(삼도극,무등비 스킵) 소요시간: 약 3시간
-
서울대식 점수로 386.xx인데 혹시 서울대 가능할까요? 안되면 연세대는 가능할지 여쭙고 싶습니다.
-
현강 커리소개에서는 의지만 있으면 누구든지 들어도 상관없다는 듯이 말했는데...
-
2028학년도부턴 모든대학이 정시에 내신을반영하면 뭐 얼마큼 반영하는거고 의대 말고...
-
저녁여캐투척 12
음역시예쁘군
-
헌혈하구옴 0
나는 행동하는 옯붕이
-
가능한가요..
-
아주 그냥 국기계양대에 거꾸로 매달아놔야지
-
https://orbi.kr/00070291158 ㅋㅋㅋ
-
나는 ㅍㄷ 누님만 좋아하지만은 궁금하네
-
쑤셔넣어주면 좋겠다 한자는 느낌이 오는데 고유어 이새끼는 뭔 뜻인지 이해조차 안가네
-
저 그때 자고있었음
-
백만덕 뿌림 (오늘=대충 자기 전까지라는 뜻)
-
처음 이과 성적표는 가나군 기준 중대 다군은 저거보다 훨씬 더 높다고
-
https://orbi.kr/00070291158 가서 좋아요 ㄱㄱ (내가 쓴 글도 아님)
-
다시 길밖으로나가자
작년에 역함수 때문에 고생 많이 했는데... 참 좋은 글이네요
스스로 겪어본 사람만이 그 참 맛을 이해할 수 있죠^^
쪽지확인부탁드립니다
답변드렸습니다. 무엇이든 너무 심각하게 고민하진 마시길~
(일단 위의 풀이에서 f와 g를 합성하는 과정은 없습니다만..)
y=g(x)가 y=f(x)의 역함수라면 말씀하신 것처럼 g(f(2x))=2x로 나와야겠지요.
하지만 y=g(x)는 y=f(2x)의 역함수이므로 f와 g를 합성하면 그대로 처음에 집어넣은 정의역의 값이 튀어나온답니다.
감사합니다^^
안녕하세요, 나의 친구 역함수님^^
.....좌변이 y가 아닌데도 함수라고 할 수 있는거에요...??
y=2x를 x=y/2로 쓰면 안된다는 말씀...?? 함수를 어떤 형태로 쓰건 그건 쓰는 사람 맘이랍니다~
같은 함수인지를 보려면 f나 g라는 표현에 현혹되지 마시고, 함수식 안에 담겨있는 변수들의 관계에 변화가 있는지만 보시면 됩니다.
y=f(2x)의 역함수를 구할 때,
x와 y를 바꾸는 건지 2x와 y를 바꾸는 건지 등등이 헤깔릴 때에는
y=4x+3=f(2x) 와 같이 아무 식이나 하나를 놓고 생각하면 더 쉬울 겁니다.
그럼 X=4Y+3=f(2Y) 가 역함수인 게 좀더 쉽게 보이시죠?
이 역함수를 Y를 기준으로 정리한 게 Y=1/4(X-3)=g(X) 일 뿐이란 것도 바로 알 수 있네요.
결국, X=f(2Y)나 Y=g(X)은 똑같은 y=f(2x)의 역함수임이 확실해지죠?
이처럼 구체적인 예시를 사용해서라도 확실히 이해하고 넘어가야만
다음에 어떤 역함수 문제가 나오더라도 자연스럽게 해결할 수 있습니다.
이 글의 마지막 문단은 수학을 잘 하고 싶은 모든 학생들이 음미해봤으면 좋겠습니다^^
1.여기서 Y=g(X)에서의 변수 Y,X랑 X=f(2Y)에서의 변수X,Y가 같은건가요?
위에서 X=f(2Y)가 역함수 인건 알겠는데 왜 이게 Y=g(X)랑 변수가 같은지 모르겠어요.
저는 저걸 잘 모르겠어서 y=f(x)의 역함수를 h(x)로 가정해서 위에 백경린T가 푼것처럼 X,Y바꿔서
g(x)=h(x)/2라고 놓고 풀었거든요.
위에 백경린T가 설명한 첫번째 질문과 두번째 질문 다ㅂ에서 한것처럼 풀어주시면 더욱더 감사드리ㅂ니다.
2.위에 평가원 문제조건이 f(x)가 실수전체에서 미분가능하고 증가한다고 써있는데
f(ax^n),f(sin^nx),f(e^x).....등등 f(x)안에 x대신 다항함수 꼴이라던가 초월함수 꼴 등등이 들어가도 미분가능하고
증가하나요?만약 그렇거나 그렇지 않다면 증명이나 반례를 들어주시면 좋겠스ㅂ니다.(왠만하면 증명쪽으로,,)
그리고 만약 f(ax^n),f(sin^nx),f(e^x).....등등 요런꼴이 실수전체에서 미분가능하고 증가할때 역으로 f(x)가 실수전체
에서 미분가능하고 증가한다고 할수있나요?
3.f(x)가 미분가능할때 어떻게 f(2x)도 미분이 가능한지 당위성을 알고싶어
요. 문제에서 f(2x)의 역함수가 g(x)라고 제시가 되있어서 성리ㅂ하는건지, 그런말이 어ㅂ스면 성리ㅂ안하는건지 모르
겠어요.
4.실수전체범위말고 어느 구간으로 정의했을때 예를들자면 (2,3),[2,3]같은 열린구간 혹은 닫힌구간...
내에서 함수를 정의할수 있나요? 정의할수 있다면 이때 구간내에서 이함수가 미분가능하고 증가하면은
역함수또한 구간내에 정의할수있고 구간내에서 미분가능하고 감소하나요?
1. 곡선 y=f(2x) 위를 지나는 점은 (x, y)입니다. g는 이 관계를 역으로 대응시켜주므로 g(y)=x입니다.
이때, y를 새로운 정의역 X, x를 새로운 치역 Y로 잡은 Y=g(X)가 바로 y=f(2x)의 역함수입니다. (g{f(2Y)}=g(X)=Y)
하나의 함수를 표현하는 방법은 아래와 같이 매우 다양합니다.
Y=g(X) <=> Y=X/2 <=> X=2Y <=> X=f(2Y)
물론 이 밖에도 무수히 다른 방식으로 표현 가능하다는 걸 아시겠죠?
2. 나머지 질문은 기본적인 개념을 배우고 나면
스스로 충분히 이해할 수 있는 내용이므로 답변 생략합니다.
Y=g(X) <=> Y=X/2 <=> X=2Y <=> X=f(2Y)
요부분에서 Y=g(X) <=> Y=X/2,X=2Y <=> X=f(2Y)
이부분이 이해가 안가는데 이부분들에 대해
좀더 설명해주실수 있나요?
f, g, h, . .등은 출제자가 임의로 정한 함수의 이름일 뿐입니다.
f(x)=2x라고 놓든, f(2x)=2x라고 놓든 그건 놓고 싶은 사람 마음이죠.
변수 x, y의 관계, 즉 좌표평면에서 (x,y)가 나타내는 점들의 위치에 변함이 없다면
함수의 이름을 뭐라고 놓든 모두 동일한 함수입니다. 이해되셨나요?
Y=g(X) <=> Y=X/2저는 여기서 왜 X/2=g(X)가 되는지 이해가 안되요...
백경린T가 말씀하신 , g, h, . .등은 출제자가 임의로 정한 함수의 이름일 뿐입니다.
f(x)=2x라고 놓든, f(2x)=2x라고 놓든 그건 놓고 싶은 사람 마음이죠.
이거는 원래 알고있었던 거고요.
Y=g(X) <=> Y=X/2이게 왜 필요충분조건인지 이해가 안가네요.ㅠㅠ
또 반복되는 얘기지만, X/2=g(X)로 쓰든 X/2=g(3X)로 쓰든 아무 상관없습니다.
다만 주어진 문제에서 y=f(2x)의 역함수인 X=f(2Y)를 출제자는 Y=g(X)라고 이름붙였기 때문에 거기에 맞춰 예시를 든 것일 뿐입니다.
결국 함수의 이름을 뭐라고 붙이든 그 함수가 나타내는 X, Y 즉, 정의역과 치역이 같으면 무조건 같은 함수입니다.
감사하ㅂ니다 ㅋㅋ
이제 이해가 되네요 ㅋㅋ
휴~ ^ ^
dd
오오 드디어 5년간의 미스테리가 풀렸네요 ㅠㅠ
역함수 나올때마다 암기해서 그냥 이해도 없이 풀었었는데,
이제 이해할 수 있게되었네요 ㅠㅠ
감사드립니다.
머~언 옛날 그리스의 한 수학자께서 공부의 참맛을 한 마디로 정의해 주었죠^^
" 유레카 ! "
우와 역함수에 대해 잘 몰랐는데
이해가 잘되요 감사합니다!!
역함수는 y에서 x로의 역대응이고 화살을표의 시점과 종점만 뒤바꾼것이라고 수학개념서(숨마)에 써있었는데요 여기서는 그게 동일한함수라고 하셔서 혼란스럽습니다..
그리고 X=f(Y)는 왜 역함수가 되는건가요?x를 치역으로 보겠다는거죠?
f^-1은 f의 대응을 역으로 뒤바꿔주는 함수가 맞습니다. 하지만 변수 x, y를 함께 표시할 때는 조금 주의가 필요합니다.
예를 들어, y=2x <=> y=f(x)의 역함수는 y를 새로운 정의역 X, x를 새로운 치역 Y로 놓은 X=2Y <=> X=f(Y) <=> Y=X/2 <=> Y=f^-1(X) 입니다.
이때, f^-1은 새로운 정의역 X에 속하는 임의의 X값을 X/2로 대응시켜주는 함수라는게 보이시죠?
그렇다면 이 f^-1( )에 y=f(x)의 치역의 임의의 원소 y를 집어넣으면 어떤 값이 나올까요?
f^-1(y)=y/2=x, 즉 x=y/2 <=> x=f^-1(y)는 y=f(x)를 f^-1로 나타낸 동일한 함수일 뿐입니다.
다시 한번 잘 생각해 보세요. y=2x <=> x=y/2라는 함수식을 보고 누군가는 x를 집어넣었더니 y가 구해졌다고 할 수도 있고,
또 다른 누군가는 y를 집어넣었더니 x가 구해졌다고 할 수도 있지만, 어쨌든 대응하는 점 (x, y)의 집합이 동일하다면 같은 함수입니다!