2022수능 수학 분석 (feat. 기출)
게시글 주소: https://w.orbi.kr/00040908443
안녕하세요.
상승효과 이승효입니다.
말도 많고 탈도 많은 2022 수능.
그렇지만 이번 수학이 특수한 발상이 난무하는 신유형 문제인것인지
기출에서 발견할 수 있는 일관된 원칙으로 문제가 풀리는지
알아봐야 할것 같아서 글을 씁니다.
수험생 입장에서 준킬러가 많이 어려웠을텐데
어떤 출제 의도가 숨어있는지 확인해 보세요.
지수함수 문제에서 중요한 것은 딱 한가지.
곡선은 보지 말고 점만 찾아서 대입해라.
문제는, 시험장에서 어떻게 저런 그림을 그릴 것인가.
수학고수들만 저런 선을 그릴 수 있는건 아니랍니다.
두 점 사이의 거리 또는 기울기가 주어졌을 때
직각삼각형을 그려야 하는 이유는 교과서에 있습니다.
이것때문에 교과서의 중요성을 새롭게 알게 된 학생이 많았죠.
이 문제에서는 기울기와 두 점 사이의 거리가 모두 나와요.,
사실 이건 9평 21번에 출제됐던 아이디어라서 익숙할 수도 있지만,
못보던 두 함수라서 당황했을거 같기도 하네요.
수2에서 배우는 다항함수의 본질,
즉, 다항함수가 다른 함수와 구별되는 점이 있다면
식 안에 접선을 품고 있다는 점입니다.
(어떤 함수의 본질을 알아야 하는 이유는,
그걸 이용해서 그 단원의 문제를 만들기 때문이죠.)
그래서 다항함수는 접선이 아주 중요합니다.
f'(1)=0 은 곱의 미분법이구요.
아래는 저의 수학2 교재에 있는 기울어진 축 단원의 내용입니다.
그리고 접선을 이용한 다항함수 식 세우기.
다음,
삼각함수.
파이널 수업에서 한가지를 집중적으로 연습했습니다.
바로, 주기가 변하는 삼각함수의 삼각방정식.
저는 한가지 원리를 학생들에게 알려주었습니다.
주기가 변한 삼각함수 그래프와 직선의 교점을 구할 때는
좌표를 구하려 하지 말고 주기가 어떻게 변하는지만 확인하면 된다.
탄젠트 함수는 기출에 없었기에 사인/코사인으로 연습했지만,
원리는 정확히 같습니다.
빨간색 선분 AC가 이 문제의 핵심 포인트입니다.
다음은, 이등변삼각형(정삼각형)이 나오면 수선의 발.
예전에 칼럼에도 쓴적이 있습니다만,
도형 문제는 최대한 중학 도형을 활용해서 푸는 것이 좋습니다.
(그 이유는 12번 인수분해 설명할 때 다시 나옵니다.)
이 문제는, 2020학년도 9월 모평 기출과 매우 유사하죠.
주어진 식을 인수분해하면,
아 잠깐, 근데 보자마자 인수분해 한다는 생각은 어떻게 하죠?
저는 수업시간에 우선순위라는 말을 정말 많이 합니다.
그리고 그 우선순위는 무조건 먼저 배운 순서대로에요.
따라서 미분이든 다른 어떤 복잡한 공식보다도
중학교에서 배운 방정식과 인수분해가 최우선입니다.
인수분해를 하면 f(x)가 여러 식이 가능함을 알 수 있는데,
핵심 포인트는 연속함수입니다.
이 문제에서는 1) 적분이 등장하지 않기 때문에
2)구간에 따라 다르게 정의된 함수를 생각할 수 있습니다.
2020학년도 9월 모평 기출
13번 문제는 로그함수 문제네요.
이거 풀면서 계산이 더럽다 라고 생각했을것 같은데요.
혹시 이걸 보고 원점 지나는 직선이구나, 라고 생각한 사람?
어떤 학생은 바로 보이고, 어떤 학생은 설명하면 이해가 되고,
어떤 학생은 설명해도 어려워 하더군요.
수능에서 필요한 그래프 시뮬레이션 능력의 차이입니다.
선천적인 두뇌의 능력의 차이? 크지 않고요.
중학교 수학에서 배운 직선에 대한 연습을 제대로 했는가
그 연습량에서 차이가 벌어지는 것입니다.
그래서 올해 원점 지나는 직선, 많이 강조했습니다.
사실 로그와 원점 지나는 직선의 관계는
2021학년도 6월 모평 가형 6번 / 나형 11번에 있어요.
이번 수능 문제가 훨씬 어렵게 느껴졌겠지만요. ㅠㅠ
올해 6평 7번 등차수열도 원점지나는 직선입니다.
저는 2a3=a6 이라는 조건을 해석하면서
원점을 지나는 직선이라는 것을 매우 강조했어요.
아니, 원점을 지나는 직선을 강조했다기 보다는,
식(공식)에만 의존하지 않고,
그래프를 직관적으로 해석하는 능력을 키우는 연습을 강조한 것이죠.
이 글의 목적은
'반드시 이렇게 풀어야 한다' 가 절대 아닙니다.
시험장에서 그런것들을 자유롭게 떠올리는건
결코 쉬운 일이 아니에요.
그렇지만 모든 평가원 문제는,
교과서에 기반한 일관된 원칙으로 풀 수 있고,
기출은 여전히 유효하다.
저는 여전히 그렇게 생각하고 있습니다.
글을 마무리 하면서,
제 수강생 중에는 수학 100점도 있고 1등급도 있지만,
원하는 성적을 받지 못한 학생도 있습니다.
저와 공부에 대한 생각이 달랐을 수도 있고,
절대적인 시간이 부족했을 수도 있고,
그냥 운이 없었을 수도 있습니다.
그래서 매년 이맘때면 참 마음이 아픕니다.
모두가 잘 볼 수는 없는게 시험이니까요.
수강생 뿐만 아니라, 1년동안 제 칼럼을 읽어준 오르비언,
이 글을 읽는 모든 수험생 여러분들 모두,
수능때문에 마음의 상처가 있다면 위로의 마음을 보냅니다.
꼭 힘내서 다시 일어섰으면 좋겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
인스타가 더 편한대 잡담하기에는..
-
저격합니다 1
탄핵소1추안 님 그런건 제발 속으로만 생각하세요 불안감 조성하지 마시고요 의갤에서...
-
우리들은 뭐함?
-
하 1
나 빼고 다 ㄱㅁ인거 같으면 ㄱㅊ
-
소수과 기준이 15명미만이라고 생각하면 되나여? 근데 예비 ㅈㄴ 도는 대형과 쓰는게...
-
오르비 레어인가 그런거 살 때 쓰는건가 메타몽 사고싶은데
-
예전엔 1
여르비가 별로 없었던 것 같은데 오늘 왤케 많지
-
이분 영화들 꽤나 충격적이네요
-
얘 이름 푸루야 성별은 남자애 11살 직사각형 모양의 푹신한 촉감이고 몸은 성인...
-
하...
-
무소유의 정신
-
알바 7개월 할 수 있다고 했는데 한달만에 관두는 거 에바임? 4
개큰 다이소 알반데 일한지 6일됐음 다른 직원분들 다 아줌마이신데 나만 20살임...
-
맵다매워....그죠?
-
어째서...
-
중대 다군 3칸 1
중앙대 창의ict 넘 가고싶은데 다군 3칸은 많이 어려울 것 같다고 해서...
-
오르비 정화 10
이제 기만 그만!!!!!!!!!
-
쿠키런주고받은것밖에없다!!!!!!!!!!! ㅆㅍ카톡오길래기대했었는데...
-
잠이 안오네 1
일찍 일어나야하는데... 잠이 안와서 우렀써
-
매직패스 써보고 돈은 좋은거구나 라는걸 느껴봄 뇨
-
재밌을거 같아!><
-
댓 안 달리다가 ㄱㅇㅇ 달릴까봐
-
5등급 노베고 고1수학부터 할거에요 개년ㅁ 부족함
-
ㅇㅈ타임이면 얼굴까지만 ㅇㅈ해~맘에안들면 경기도 남양주시 와부읍 팔당로 121...
-
다른거 다른거.. 심심하다
-
뭐로 바꿔볼까요? 사실 바꿀려면 시간이 조금 남았긴 한데
-
흠
-
텔그 진학사 격차.. 12
텔그 모의지원 32%텔그 자체예상 20%진학사 6,7칸 왔다갔다 이러면 붙을 수 있음?
-
안 자네 ㅋㅋㅋㅋㅋ
-
ㄹㅇ 차라리 성적으로 기만을 해~
-
맞팔구하미다 8
헤헤 하와와 여중생쟝이에요 ~
-
재탕임뇨
-
진짜 슬픈건 6
인증해도 뭐라 반응할지 몰라서 몇십초 기다리다 간신히 올라오는 ㄱㅁ 두글자임
-
오티 보다가 너무 설렛엉 내스타일이양>< 사문 안해봤는데 한다면 윤성훈쌤 말고 손고운쌤으로 해야지~
-
곧 크리스마스라서 15
원서철 시작되니까 취업 관련 영상이라던가, 학과소개영상 같은 것들 달리는중 아직...
-
누나들 4
인증 좀.
-
여론조사였음뇨. 의대정원 확대나 25학년 모집중지 같은거 물어본 여론조사.
-
오르비 특 1
진지한글올릴때만묻힘
-
근데 이게 무슨 소용이냐 연락하는 사람은 저기서 5%도 될까말까인데 새로 팔까 너무...
-
고1 수학부터 해야하는 수학 노베 이미지 vs 정병호 2
누가 더 좋을까요? 이번 수능 5등급이라 고1수학부터 다시 하려고 하는데 메가패스는...
-
브롤 XX이가뒷구르기하면서넣은 쿠키런 XX이의 발닦개 프세카 츠카사의 빤1스
-
노잼인증하기 6
펑 넵
-
오랜만입니다 0
딱 한달만이네요
-
영화보고 왔는데 2
개같은 기만러 왤케 많음 하
-
기만럳,ㄹ 하...
-
. 8
.
-
어차피 지금 안자는건 내일 일정없다는 거 공인하는건데 똑같은 사람끼리 왜이러는거임?
-
낙지스나 0
다들 스나 하는곳이 최종컷이랑 본인 점수랑 몇점 차이 남?
-
전술핵 투하 9