[물리학2] 빗면에서의 중력끄기
게시글 주소: https://w.orbi.kr/00043336732
맨날 비생산적인 뻘글만 쓰다가 유익할지도 모르는 글을 써보는건 처음이라 읽기 불편할수 있음
일단 포물선 운동하는 물체의 변위를 초기 속도에 의한 벡터와 중력가속도에 의한 벡터의 합으로 나타낼수 있다는 사실은 너무 유명해서 다들 알고 있을거임
흔히 중력끄기라는 스킬로 알려져있음
근데 이걸 빗면에서 운동하는 물체에는 어떻게 적용할수 있을까?
경사각이 θ인 빗면에서 등가속도 직선 운동하는 물체에 작용하는 힘은 중력과 수직항력의 합력이고 가속도 gsinθ로 운동함
따라서 빗면에서 초기 속도 v로 운동하던 물체는 '중력가속도에 의한 벡터'를 다음과 같이 나타낼수 있음.
어떻게보면 너무 당연하고 간단한 사실인데 이걸 문제에 적용시켜보도록 하자
22학년도 수능 15번
이건 사실 그냥풀어도 개쉬운 문제긴 한데 위의 사실을 적용시켜서 풀어보겠음
물체 A를 p에서, 물체 B를 q에서 동시에 발사했더니 r에 동시에 도달한 상황임. 이때 A는 r에서 최고점이니까 A의 '초기 속도에 의한 벡터'는 빗면 위의 높이가 3h인 점 s까지 그을수 있음.
근데 두 물체가 같은 시간동안 운동했으니까 '중력가속도에 의한 벡터'는 둘이 같지 않을리가 없음. 따라서 sr' 벡터가 빗면에 수직임
그림에서 3hsinθ^2=h이므로 빗면의 각도 sinθ=1/sqrt(3)을 알수있고, 식을 잘 정리하면 v=sqrt(3gh)이므로 답은 2번임
이번엔 좀 어려운 문제를 풀어보자
지금은 내려간 옆1동네 출처의 어떤 N제 문제임
일단 (가)를 먼저 그려보자
이 문제 역시 동시에 출발해서 수평면 위의 같은 점에 동시에 도달한 상황임. 그러면 A의 출발점에서 B의 '초기 속도에 의한 벡터'의 종점 P까지 이으면 그게 빗면에 수직일수밖에 없음
마찬가지로 (나)에서도 동시출발 동시도착이니까 B의 '초기 속도에 의한 벡터'의 종점 Q는 그림과 같이 되어야 함.
여기서 중요한 사실 하나를 알수 있는데 닮음비로 잘 생각해보면 '중력가속도에 의한 벡터'의 크기 비가 (가):(나)=3:1임
따라서 시간비는 sqrt3:1인것을 알수 있음
이건 말로 설명하기가 좀 어려운데.. 대충 A의 출발점을 R, B의 출발점을 S라 하고, X는 Q랑 높이가 같은 점, Q'는 Q랑 같은 연직선 위에 있는 점으로 그림과 같이 정하겠음
그러면 SQQ'랑 SPR이 닮음비가 1:3이고, QQ'=XR=1/sqrt(3)v0t임
이번엔 삼각형 QPX를 보겠음. QX=sqrt(2)/sqrt(3)v0t, PX=2/sqrt(3)v0t니까 sinθ=1/sqrt(3)임
이제 빗면의 각을 구했으니까 상황이 매우 간단해졌음. sqrt(3)v0t=2h, 1/2gt^2=h니까 식을 잘 정리하면 답은 2번임
이 문제는 예전에 썼던 풀이(https://gall.dcinside.com/mgallery/board/view/?id=physics2&no=4629)가 있긴 한데... 너무 생략을 많이 한거같아서 다시 써봄
질문할거있으면 댓글 ㄱㄱ
사실 이 내용 이미 알고있었을 분들도 많을거같긴 한데 그냥 심심해서 정리해봤어요
올해 수능에서 물2러분들 다들 좋은 결과 있으면 좋겠습니다 :)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
분명수능장에선 맞췄는데 집에서 다시푸니까 틀림 ㅅㅂㅋㅋㅋ
-
요즘은 아이폰이 더 좋더라 그때는 루팅하고 오버클럭하고 나름 재밌었는데 요즘은 그럴...
-
진짜 갑자기 기억안나는데 수영장에서 그럼 위에는 벗고 바지가 0
수영복이이엇나 팬티엿던거같기도한데
-
고2교육청보다 선지가 더 잘 뚫리고 근거가 명확한 느낌인데 교육청-평가원 차이인거겠죠?
-
원서쓰고 점공안하면 사형수능끝나고 가채점안하면 사형허위표본 등록시 사형이렇게 세가지...
-
합 155 아
-
작년이랑 같은 방식으로 한 게 아닌가요? 시간차때문에 다르게 나오는거말고 진짜로...
-
메일로 신분증이랑 전번까지 해서 한 3번 보냈는데 아직도 수정이 안됨.. 에피 받아야하는데..
-
심우주를 고도화 된 망원경으로 관측하면 할 수록... 2
기존에 생각하던 내용과는 다른 결과들이 관측됨 하지만 그렇다고 빅뱅 이론이 흔들릴 정도는 아님
-
심찬우 생글생감 2
심찬우쌤 생감은 언제 나오나요
-
갑자기 오랜만에 수영장가느넫 어릴때 갓어서 기억 안나느데 옷갈아입을때도 팬티...
-
올수 22번이네 아오 ㅅㅂ
-
일하러가는중 13
coopang.........
-
피드백중인데 아직도 몰르겠음
-
'우울증은 바쁘면 낫는다, 바쁘면 우울할 시간도 없다' 이 말 동의하시나요? 18
어떻게 생각하시나요?
-
너무 막굴렸어
-
ㅇㅈㅎㅈㅅㅇ 2
나도햇잔아
-
표점+변표 보는 대학교는 국어랑 수학은 표준점수 탐구는 변환표준점수 이렇게 보는거 맞나여
-
이걸 원서 쓰고 나서야 알아버리다니
-
독서 들어본 사람 있나요? 둘 다 저는 지금 발차기마스터 독서만 듣고ㅠ있는데 누가 더 낫나요
-
3모는 엔수도 같이보게 해줘 ㅠ
-
Questionable Every
-
맞팔해용 30
금테냥 가부자
-
재수생이고 69수능 다 47받았었고요... 공부 그닥 잘하는 편 아니고 메디컬...
-
따로 사는법 없을까오?
-
이주호 18련아
-
계획짜고있는데 고민되네용….. 원래는 강의 올라온날 개념공부하고 3-4일뒤에...
-
없어서
-
아이폰 갤럭시 일반형도 무겁다 성능 좋은 작은폰->13미니 하 다음 폰 뭘로 바꿀지...
-
Team03특 9
더이상 팀이 아님...
-
시간의 하한을 잡아두는 것도 죠습니다 갠적으로는 15분 정도 잡으면 적당하지 않을까 싶음뇨
-
친구때문에 힘들다 13
릴스에서 본건데 이건진짜 슬프네
-
22번 15번급이라 하는 것들은 고민해보면서 시간투자 해서라도 풀고 해설 들어요...
-
엑셀 갑자기 편집을 무시하는데
-
누군가의 체액이다 이런거 상상하면서 마시면 괜히 내가 송아지가된거같고 엄마소얼굴이...
-
맞팔할사람 7
여러분들 도와주세요 은테가즈아
-
아가 자야지 10
모두 굿밤
-
팔로워 숫자 ㅁㅌㅊ? 13
인스타 팔로워 + 카톡친구 + 연락처 < 오르비 팔로워
-
진짜 바이럴 ㅅㅂ 유튜버색휘들걍ㅋㅋ
-
수학문제 풀 때 진정되는 효과있음 수스퍼거도 아니고 수학을 잘하지도 않는데 치분히...
-
팔로워 숫자 대소비교임뇨
-
언매 문제 1
언매 goat 문제집 추천좀해주세요 내신 수능 둘다 대비용으로
-
국수영 다 괜찮은데 과탐이 유독 그러네 딴생각하고 손 뜯고 멍 때리고... 왜...
-
아ㅋㅋ
-
지방 사는 기준으로 보기에는 여기 수도권 사시는 분이 많을것 같아서 물어보기가...
-
확통 개정 시발점에 원순열 빠져있는데 혹시 EBS나 메가에 원순열 개념 잘 가르치는...
-
취한다 3
헤롱해롱
-
정시 지원은 처음이라서 추합 전화는 언제 오는지 등록금 어케 해야되는지 아무것도...
-
의사는 몰라도 회계사 세무사가 소득으론 한의사 자주딴다 ㅋㅋ
진짜 개고임;;
현T 수업 들으심?
아니요
귀요미!귀요미!귀요미!
어이x
그는 신인가?
않입니다..
이..이게머노
몰?루
오 26됏다
와 이거 물올때 많이 했었는데..7ㅐ추 벅벅!
물올에서도 많이 쓰이는 스킬인가요?
기억을 잃었어요 엉엉
역학: 힘에 대한 학문 -> 힘 분석만 해도 반은 먹고 들어감
을 단적으로 잘 보여주시네요 잘봣습니다 ㅎㅎ
이 스킬 오랜만에 보네
물2게이야...
물2러 국민스킬이죠
올해도 물2해야될지 물1으로 빤스런할지 고민이네요...ㅋㅋ
혹시 첫번째 문제에서 3h가 갑자기 나온게 이해가 안되는데 설명 해주실 수 있나요?