22년 4월 교육청 수학 손해설지 및 간단한 총평
게시글 주소: https://w.orbi.kr/00056147281
22년 4월 교육청 수학 손해설지 by 파급효과.pdf
안녕하세요. 파급효과입니다.
생각나는 풀이로 바로 적었기에 풀이가 정갈하지 못할 수 있습니다.
오류 및 오타제보,질문, 제안 등등 언제든 환영입니다.
간단한 총평을 남기자면 다음과 같습니다.
(1) 공통과목 난이도: 중
14번, 21번에서 막혔을 수도 있을 것이라 생각합니다.
13. x, t 문자가 많네요. 무엇을 적분하는지 잘 확인해주세요.
14. 절댓값 그래프를 그리고 곱과 합의 연속성, 미분가능성을 따져주면 간단합니다.
21. 제일 까다로운 문제네요. 중간지점 기점으로 절댓값이 대칭이겠거니 생각하시면 됩니다.
22. g'(x)가 사차함수인데 g(x)가 두 곳에서만 극값을 가지려면? 중근을 가져야 겠죠?
22 수능이나 22년 3월 교육청보다는 널널한 시험이었습니다.
(2) 선택과목 난이도: 중
제 기준으로는 미적>확통>기하였습니다.
수능보다 출제범위가 너무 좁아 낼 수 있는 문제가 한정적입니다.
확통은 28번, 29번, 30번에 힘을 좀 줬고 미적분은 28번, 30번에 힘을 줬네요.
기하는 전부다 가형 시절 무난한 3~4점정도입니다.
한숨 돌리는 시험인 것 같습니다.
모두들 수고 많으셨습니다 ㅎㅎ
현역분들은 중간고사 대비도 잘하셨으면 합니다.
감사합니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
진지하게 인증 보고 긁힌 적 있다 ;; 아니 이런 사람이 왜 오르비를 함
-
지거국도 촘촘해졌네 ㅋㅋ
-
돈을 얼마를 벌던 못생긴걸 극복하는 건 불가능함 못생긴 걸 극복하는 건 오로지...
-
못생겨도 뭐 4
개그맨 하면 적성에 맞지 그것도 재능인데
-
이제 밤 새야지
-
교양과목 한 번 돌리고왔는데 아직도 ㅇㅈ메타라뇨..
-
진짜 인증함 ㅇㅇ 12
현재 내 책상 ㅇㅈ
-
더 울어라~~ 6
젊은 인생으아~~
-
저격먹었다 5
아니나도(수)의대가고싶다고
-
어이없는데 각잡고 찍을때보다 잘나올때있음….
-
수능 생윤에서 작살났는데 이거 계속 하는게 맞을까요.. 2
6모 41 9모 43 수완 실모에서도 5개 풀어서 전체에서 한 3갠가 틀렸습니다....
-
새벽 pc방이 로망이란말이다
-
한 2년전만 하더라도 오르비에서 인증한걸로 서로 저격하고 그랫다는데 맞아요??
-
안녕
-
자신있는데
-
80점 받고 백분위 61을 받았던.
-
열심히 한다고 될 지 모르겠음 삼수면 서성한은 가야하지 않나 서성한 너무 가고 싶다
-
예상치못햤는데사실
-
선착순 13명 만덕 31
뿌리고 탈릅 준비해야지 이제
-
나 왜 팔로워 줄어드냐 10
아니아무리못생겨도 팔취는너무하잖아
-
아쉬워요
-
대학합격하고나서 1
애인생기긴했는데 같은대학은아님
-
올해 탐구 보정 7
이번에는 물보정일까요 불보정일까요 물1, 화1 유불리 줄이려면 물보정이 맞죠 변표...
-
국어 고정 1등급들은 20
이감, 상상 모의고사를 넘어서 리트도 푸나요? 궁금쓰
-
대수
-
다들 잘나서
-
이런거지같은학교
-
안경이 일그러지고잇네 ㅅㅂㅌㅋㅋㅌㅌㅋㅋㅋ
-
지듣노 0
인증은 무슨 인증이여
-
전에 몇번했는데 무서워쟛어
-
전 그냥 바닥에 버리는데
-
진짜 ㅈㄹ웃기뇨 8
다들못생겼다고연막질하던데 다가짜였음뇨
-
코딱지 파서 침대밑에 10
붙여보신분?
-
본인 외모썰) 4
혈육 왈: 님은 연애는 꿈도 꾸지 마쇼
-
뱌고파 5
이런적이있었… 그래서 얼굴팔려도 ㄱㅊ아요..
-
자기가 두뇌는 몰라도 얼굴은 설의 가야하면 개추ㅋㅋㅋ 0
ㅇㄷㄴㅂㅌ ㅋㅋㅋ
-
난 갠적으로 4
아이돌 상보다 그냥 평범한 안꾸민 사람이 좋아 그냥 개인적인 취향임
-
에휴 2
또 나만 진심이엿지 미친 기만러들
-
ㅇㅈ한번 20
심심해서
-
나 무서워
-
같이 연대 점공 표본 분석해주신분 밥 사드렸었는데 잘 지내시려나 흐엥
-
즈메인증 10
새거
-
일단나부터
-
그럼
-
막상 해보면 진짜 뭐 없음 그냥 안해봐서 환상이 있는 거 같음
-
ㅇㅈ 3
내 미래 ㅇㅈ
-
진짜 위기임 0
10억 받고도 랜덤 돌리기 안할 얼굴들이 나타나고 있어
-
락스 마시기전에 끝내셈요들
감사합니다. 아우...수학 등급 떨어졌네요 ㅠ.ㅠ
수능 땐 잘나올겁니다. 화이팅!
항상 잘보고있어요
감사합니다 ㅎㅎ
한숨돌리고이후에숨을못쉬고있읍니다살려주세요
ㅠㅠ 그래도 6평까진 시간이 좀 있네요 ㅠㅠ
개인적 생각이지만 생각보다 13번에서 벙쪘을 수도 있을 것 같습니다.
적분구간이 2부터가 아니라 1부터라고??
이런 느낌
동의합니다. 좀 당황했을 수도 있을 거 같아요
혹시 14번 ㄷ해설에서 연속인 것들 중 k=1, -4, -2만 미분가능하다고 바로 단정지을수 있는 이유가 있을까요?
직접 식써서 확인해야 하는데 그 부분이 살짝 생략된 것입니다. 바로 나오긴 힘들죠
좌미계=우미계 식을 쓴다는 말씀이시죠? 감사합니다~!
넵넵 그렇습니다 ㅎㅎ
매번 제 식이랑 비교하면서 많은거 알아갑니다. 정말 감사합니다
도움이 되었다니 좋네요 ㅎㅎ 감사합니다.