[박재우] 9평에 대한 분석과 저의 생각
게시글 주소: https://w.orbi.kr/00058231647
안녕하세요
오랜만입니다.
어제 시험 분석을 하고 촬영을 하느라 글을 올리지 못하고
오늘 공강 시간이 되어서야 글을 올립니다.
우선 시험치느라 고생들 많이 했습니다.
언제나 얘기하는 것이지만 난이도라는 것은 개개마다 다르기에 언급하지 않겠습니다.
평균적인 난이도에 대한 부분은 여러 회사들이 분석해서 낼 것 이니까
그것이 훨씬 공신력이 있을거라 생각합니다.
오늘 아이들 질문을 받고 생각한 부분을 한 번 써 보고자 합니다.
언제나 생각해야 하는 방향은 어떻게 하면 문제를 빨리 풀고
실수하지 않고 잘 마무리 하느냐라고 생각합니다.
긴 시간을 갖고 문제를 정확하고 논리적으로 잘 푸는 것도 중요하지만
시간이라는 제약조건 내에 다시 한 번 검토할 수 있는 시간을 확보하고
좋은 점수를 얻기 위하여 전략을 어떻게 해야 효과적일까에 더 중점을 둬야 한다고
생각합니다.
이제 문제를 풀 때 어떤 부분에서 힌트를 얻고 힌트로 말미암아 중간 과정을 얼마나 많이 줄일 수 있을건지
이번 9평 주요문제들을 보면서 약간의 도움 말씀을 드리고자 합니다.
더 좋은 방법은 얼마든지 있으므로 제 말이 진리인 것은 아니라고 말씀을 미리 드립니다.
11번 - 근의 개수가 나오는 문제는 그래프 개형이라는 것과 이차함수는 항상 대칭성을 가지고 있다라는 것이
포인트겠죠. 최근 나왔던 주제이기도 하구요. 보자마자 짝수차 실근의 곱이 -9 라는 것에서
그래프상으로 +- 3인 것을 바로 얻고 f(n)=8 이되는 한 근이 3이므로 나머지 하나는 대칭성에 따라 1이 된다
끝이겠죠
13번 - 길이와 각이 주어진 문제기 니오면 일단 주어진 위치를 먼저 파악하는 것이 중요합니다.
그리고 원에 내접하는 삼각형이 있으면 바로 사인 정리를 떠올리고 반지름 구하기를 떠올리면 됩니다
일단 점 C에서 선분 ED에 수선의 발 H를 내리면 위치가 주어진 길이와 각에 의해 선분 CD는 바로 해결됩니다.
각 D는 자동해결 그리고 반지름은 OD를 생각하고 OE를 a라 두고 삼각형 OED에서 코사인 법칙을
쓰면 해결됩니다. 별로 시간이 소요되진 않습니다.
일단 각과 선분 길이가 있는 곳의 위치를 팡가하면 거기서 문제를 풀어 나갈 수 있게 될 겁니다.
14번 - 최근에 면적과 원함수의 차에 대한 해석이 좀 보이고 있습니다. 이 번 육사 문제에서도 속도에서
움직인 거리와 위치 변화량에 차에 대한 문제가 나왔죠. 명칭만 다를 뿐 기본적으로 같은 개념 입니다.
당연 절댓값이 들어가 있으므로 부호에 대한 해석이 전체 해석의 대부분이 됩니다.
두 함수의 값이 같아진다는 것이 무엇을 의미하는 지 꼭 기억하시길 바라구요
ㄱ,ㄴ,ㄷ, 합답형 문제는 우선 질문 내용을 스캔하고 들어가시면 좀 좋아지는 데 모든 질문에
이면이라는 조건이 들어가 있으므로 각 케이스에 대해 해석하면 될 것입니다.
합답형은 사고가 서로 연관이 되어 있다는 것을 꼭 기억하고 ㄴ과 ㄷ은 서로 연결이 되어 있음을
생각하고 들어가면 ㄷ 역시 간단하게 해결이 됩니다.
15번 - 기대보다 떨어지는 문제로서 살짝 실망했던 문제입니다.
전형적인 대입 추론 문제입니다.
처음에 4k가 나와 있다는 것에 착안점을 두고 반복되어지는 현상이 결국 4회를 기준으로 변할 수 있다는
것을 에상하면 빨리 해결이 되겠습니다.
(가) 경우에서 a4가 시작이므로 a1, a2, a3는 5보다 큰지 작은지 경우만 나누어서 접근하면 되겠습니다.
20번 - 별로 언급할 내용이 없습니다.
극대. 극소 x값 차가 4/3 이기에 기울기 4인 접선이 바로 (1,1) 지난다는 것은 비율로 금방 찾을 수 있겠
습니다.
21번 - 일직선 상에 놓여진 점은 항상 x축으로 수선을 내려서 삼각비를 이용해서 닮음을 쓴다는 것 기본입니다
22번 - 일단 그래프 해석할 때는 극단적인 예를 하나 들어서 상황에 만제 변회시키는 것을 추천합니다.
문제가 실근에 대한 얘기를 하기에 삼차함수의 x축에 접하는 점이 존재하는 형태의 그림을 생각하고
x축을 위 아래로 옮기면서 해석하면 정말 빨리 끝나게 됩니다.
그리고 중요한 점인 극점 부분을 항상 중심으로 우선 해석하길 바랍니다.
대략적인 부분을 공통 문제 중심으로 해석을 해 보았습니다.
결국 시간 싸움이라는 것 잊지마시고 극값 같은 중요한 포인트나 개형을 중심으로 우선 해석하는 연습을
많이 하길 바랍니다.
본인이 열심히 해왔다면 충분히 발 헤쳐 나갈 수 있으므로 남은 가간은 문제를 중심으로 해석하는 연습을
꼭 많이 하시길 바라고 시간에 대한 압박감과에 대한 대처와 풀이에 대한 전략 수립을 위해
주변 학원들에서 진행하는 현장 모의고사는 꼭 참여해서 연습해두길 바랍니다.
물론 아주 잘하는 친구들은 그냥 자기가 하던 것을 그대로 계속하시면 되겠습니다.
빨리 입시판을 건너길 바라며 파이팅입니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
코인단타로 돈버는 꿈 꿨는데 흠..
-
뒤에 뭐 대단한 게 있던 게 아니라 진짜 이게 끝이었던 거임? 진짜 그냥 민주당한테...
-
잠 좀 자자 0
-
유관력이 있는가? vs고려대 승리 병신이 없는가? vs 서울대 승리 그저 goat 대 연 세
-
야당의 폭거에 대처하기 위한 고육지책이었음이 밝혀졌다. 윤석열의 담대하고도 고도의...
-
ㄹㅇ 이건가 2
-
뭔 정치적쇼를 해도 저따구로 하냐
-
이제 자야겠다 2
갑자기 계엄령 선포되었다구 해서 잠도 못잤네 6시 반에 일어나야되는데 클남...
-
계엄한 이유 15
민주당이 예산 삭제시키고 탄핵시키고 정부 마비시키니까 적당히 하라고 겁준거네 애초에...
-
[속보]윤 대통령 “국무회의 통해 국회 요구 수용해 계엄 해제할 것” 1
[속보]윤 대통령 “국회 계엄 해제 요구로 계엄 사무에 투입된 군 철수” [속보]...
-
종북세력은 국가의 악이다
-
이번에 다시 한번 수능을 준비하려고 하는데요. 수학 듣는다면 강윤구 선생님을 듣고...
-
존나 맛없네 1
윤X열 시발련아 그래서 내 아반떼 한 대는 언제 돌려줄래
-
ㅋㅋㅋ
-
아니 난 그게 더 중요하다고 시발
-
ㅋㅋㅋㅋㅋㅋ
-
오피셜)계엄해제 1
ㅇㅇ
-
끝났네
-
대통령 담화중 3
ㅈㄱㄴ
-
걍 끄지라ㅋㅋ
-
끝나던 2차전 가던 이미 결과는 정해졌다.
-
속보 들어오는거 지금 혹시 전쟁 준비하는거임? 진짜 너무 무섭다
-
어떻게 딱 눈동자 모양으로 서있지 ㅋㅋ
-
또 담화한다고? 5
뭐냐
-
?
-
ㅅㅂ 민주주의의 소중함에 대해 말하는데 동덕이 왜나와 이거 진짜 미친척하고 밀어...
-
이번에 계엄 3
한걸로 탄핵된다고 쳐도 수능 유형이 석열 정부 이전처럼 내년에 바로 변하지는...
-
아싸 권한대행이다 히히
-
국방부 "김용현 장관이 계엄 직접 건의한 것이 사실" 1
(서울=뉴스1) 허고운 기자 = 김용현 국방부 장관이 3일 윤석열 대통령에게...
-
성동격서라는 말도 있는데 지금 이렇게 소란스럽게 이목을 끌고 뒤에서 비밀스럽게...
-
시립대 낮과 불가능할까요…
-
연애 하고싶다
-
몰에서 막히네 4
에휴 ㅋㅋㅋ 수학은 수학의 정석으로 수2까지 독학했는데 화학은 쉽지 않음+에이징...
-
진짜 생각없이 진행했다가 실패한거에요? 가만히 있으면 오늘내일중으로 탄핵인데 그냥 가만히 있어요?
-
돌아올 수 없는 강을 건넜어. 잘가라
-
북한같은데라도 갔나
-
롤이나할까
-
잠수탄거 뭐임
-
난 중학교때 좋아하던 애가 자기는 의사가 멋있다고 의사랑 결혼할거라 해서 바로 일반고 진학함 ㅋㅋㅋ
-
교과서에서만 보던 계엄철폐 독재타도를 라이브로 보다니 참,,, 티비로만 봐도...
-
빠르네 ㄷㄷ
-
다 너때문이야 빨리 나와서 말좀해봐
-
오늘자확실해진거 2
대학가기전에나라가망하게생김ㅋㅋ 에휴시발ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
-
엄.. 설마 아니지? 재명이형 탈원전은 진짜 아니지
-
국무회의를 거쳐서 계엄령을 선포했다면 국정 누가 맡지? 다 내란동조인데
-
[속보] 조국혁신당 "윤 탄핵안 내일 발의…민주당과 논의 중" 1
[서울=뉴시스]조재완 기자 =
-
유엔, 한국 비상계엄 선포에 "상황 우려하며 면밀히 주시" 1
(뉴욕=연합뉴스) 이지헌 특파원 = 유엔 사무국은 3일(현지시간) 윤석열 대통령의...
-
그러면 명태균 죽었음 장난이 아니고 진짜 죽었을 거임
-
삼권분립이 망하는데 정치 괜찮은거 맞음?
-
'계엄 해제' 놓고 또 갈라진 與…친한 18명 찬성표, 친윤 불참 1
한동훈, 尹비상계엄 '위헌' 규정…野 탄핵 추진시 변수 될 수도 (서울=연합뉴스)...
선생님 항상 존경합니다