[미적 자작 문제] 무리수 e의 정의
게시글 주소: https://w.orbi.kr/00058891974
사실 이 문제는 '무리수 e의 정의'라는 이름을 붙이는 순간 풀이 과정이 뻔하기 때문에... 숨기는 것이 맞다만 그래도 문제에 이름은 붙여야하니 ㅜ 달았습니다. 어떤 변수 a에 대해 a가 0에 한없이 가까워질 때 (1+a)^(1/a) 꼴이 수렴하는 값을 e로 정의한다는 점을 공부했죠? 이를 단순화해서 바라보면 어떤 극한식에서 밑이 1로 가고 지수가 무한대로 발산하면 e와 관련되었을 것이라는 생각을 해볼 수 있습니다.
여담이지만 [e^x-e^(-x)]/2는 쌍곡선함수 중 한 종류로 sinh(x)로 표기하기도 합니다. 추가로 cosh(x)=[e^x+e^(-x)]/2이며 [sinh(x)]'=cosh(x)와 [cosh(x)]'=sinh(x)가 성립하는 등 삼각함수와 유사한 성질을 나타낸다는 점에서 표기에 sin, cos이 들어간다고 알고 있습니다.
추가로 한국 고등학교 교육과정에서 다루는 6가지 삼각함수의 풀네임은 sine, cosine, tangent, cosecant, secant, cotangent입니다!
+문제 아이디어는 작년에 논술 준비하며 봤던 어떤 문제로부터 얻었습니다! 다시 말해 온전히 제가 떠올린 것은 아니에요
[해설]
lim x->0인 상황에 대해 식 변형만 해볼게요! 핵심은 무리수 e의 정의를 활용하는 것과 초월함수의 극한을 활용하는 것입니다. 우선 '어떻게 무리수 e의 정의를 떠올리냐?'라는 질문에는 '지수함수 꼴 함수식에서 밑이 1로 수렴하고 지수가 무한대로 발산하는 것은 무리수 e를 정의할 때 사용하는 극한식과 같은 꼴이기 때문'이라는 답을 드릴 수 있습니다. 따라서 무리수 e의 정의식 (1+x)^(1/x)를 활용하기 위해 밑을 1+f(x) 꼴로 바라보고 지수에 1/f(x)꼴을 잡는 쪽으로 식을 변형해볼게요!
[x^3+9sin(2x)+[e^x+e^(-x)+2]/2]^[1/sin(2x)]
=[1+x^3+9sin(2x)+[e^x+e^(-x)]/2]^[[1/[x^3+9sin(2x)+[e^x+e^(-x)]/2]*[x^3+9sin(2x)+[e^x+e^(-x)]/2]/sin(2x)]]
이제 e로 수렴하는 꼴이 나왔으니 지수식을 정리해주면 되는데 삼각함수와 지수함수가 있으므로 sin(x)/x와 (e^x-1)/x 꼴을 띄울 생각을 해볼 수 있습니다, 우리는 초월함수의 극한을 학습한 상태니까요! (함수의 극한에서 lim를 분배할 때 핵심이 내가 아는 극한으로 극한식을 구성하듯 나타내는 것이죠? 수렴하는 걸 알아야 lim를 극한의 성질에 따라 분배할 수 있으니까요!) 따라서 지수의 식을 변형해봅시다.
[x^3+9sin(2x)+[e^x+e^(-x)]/2]/sin(2x)
=[x^2+9sin(2x)/x+[(e^x-1)/x-[e^(-x)-1]/x]/2]/[sin(2x)/x]
=[x^2+18sin(2x)/(2x)+[(e^x-1)/x+[e^(-x)-1]/(-x)]/2]/[2sin(2x)/(2x)]
이제 무리수 e의 정의와 초월함수의 극한을 활용하면 [1+x^3+9sin(2x)+[e^x+e^(-x)]/2]^[1/[x^3+9sin(2x)+[e^x+e^(-x)]/2] 부분은 e로 수렴하고 [x^2+18sin(2x)/(2x)+[(e^x-1)/x+[e^(-x)-1]/(-x)]/2]/[2sin(2x)/(2x)] 부분은 19/2로 수렴함을 알 수 있습니다.
따라서 극한값은 e^(19/2), 답은 e^(19/2)
타이핑 했더니 문자들이랑 괄호가 좀 복잡해보이긴 하는데 '무리수 e의 정의'와 '초월함수의 극한'이라는 아이디어만 잡으면 다들 어렵지 않게 값을 구해내실 수 있을 겁니다. 초월함수의 극한 연습하기 좋은 문제라고 생각해요, 물론 식 자체가 복잡해서 수능에는 나오기 힘든 모양이라 생각하고 나와도 논술에 나올 만하지 않나 싶네요 ㅋㅋㅋ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이거말고할게없네
-
이대 0
이대 수리논술 휴바기 컷 높은 편인가요?
-
영어 한등급 차이로 누군 의대 가고 누군 약대 가네
-
1. 글쓴이가 의사다 2. 25의대 입시정원이 아직도 불확실할 수 있단 얘기를 한다...
-
수의대든 의대든 보내주세요
-
사회적으로 만연한 물질주의, 외모지상주의 풍조도 그런데서 기인한다고 봄 그렇게 다들...
-
보내주세요ㅠ
-
1.존예 옆집 누나 2.존예 여사친 3.친구의 존예누나 4.자주가는 곳 존예 알바생...
-
내꿈은뭘까 0
흠
-
아무도 얘기가 없네여
-
자기보다 더 잘나고멋진남친사귀면 되게좋고신나고 나보다더잘난남자만나서좋을수도있는데 또...
-
지피티가 제공해 주는 자료의 질이 달라짐
-
메디컬 갈 성적에서 고민하는 문과는 설경이라는 소리인데 아웃풋 보고 억! 소리 나온다
-
오르비차단시스템 6
걍댓글단거도안보이게해달라고
-
게임 닉 한자로 되어있는사람 보면 ㄹㅇ 고수
-
뭐가 정배임 만약 46이면 사문은 더 이상 꿀과목이 아니라 봅니다
-
a=1인경우가 M이 8명 N이 12명 합쳐서 20명인건 기억나는데 다른게 기억이...
-
ㅈㄱㄴ
-
의대도망했다 한의대도망했다 문과는이미망했다 나는어디로가야하오
-
개국을 하면 부러울 직업이 몆 없다 그러나 개국할 돈이 없는 사람이라면 학교에 와서...
-
다시한번 드는 생각이다
-
피카레스크가 10
주인공이 정병이 아니라 주인공이 악인인 거였구나 난 왜 이렇게 알고 있지
-
만약 저 글이 사실이라면 오르비에서 재수 삼수해서 의대 가는 애들은 공부는...
-
bullet point로 해달라 하면 존나 깔쌈하게 해 줌 여기서 이제 요약...
-
국회의원,장차관,대통령,모든 공무원 미필은 임용금지 정치인들 죽을때까지 연금나오는거...
-
피카츄 아님. 이런 장르 상상 이상으로 재밌네요 게다가 비극적인게 저랑 코드가 잘 맞는듯
-
나만 1013 나옴...?
-
간호 4학년 취업 12
아직 대학병원 모집 공고 안내려온 것 맞나요..? 사촌 졸업반인데 백수각이라고...
-
후문으로 들어가도 되나요?? 급해여ㅠ
-
고대 경제는 제가 가야함
-
미들부터어려움뇨
-
띵곡 6
민경훈 결혼한대..
-
이대 논술 0
답 다 맞고 서술에서 좀 깎여도 합격 가능할까요..?ㅠㅠ
-
지금부턴 똑똑한 애들은 자기 대학 쉽게 가려고 좋은 대학을 까는 개소리를 인기글로...
-
진학사 기준 410.5에 cc면 서울대 공대 어디까지 볼 수 있나요 ㅜㅜ 텔그는...
-
저거에 속아서 반수할 능지면 제발 치대가세요
-
안녕하세요, 메가스터디를 이번에 처음 들으려는 학생입니다. 처음이어서 몇가지 질문...
-
수학재능없으면 6
이미지 n티켓 (2024)수12미적 이미지 하사십(2024) 한석원 4의규칙...
-
수능 성적표 금욜날 볼 수 있는거죠? 그리고 폰으로 볼 수 있었나 0
기억이안나네
-
어두컴컴하면 집중이 잘 안 돼서 평소에도 밝은 환경에서 공부했는데 수능 날 커튼이...
-
하지만 난 고고히 내년도 보겠다..
-
ㅅㅂ 6
드디어 도착 길 헤멜 리 없겠다 럭키비키한걸?
-
어디까지 갈 수 있을까요..?
-
잘생기긴 했어
-
단연코 패드가 아닌가싶음 휴대성도 좋고 책이나 ppt를 패드로 봐야할 때가 되게...
-
결말이없음 이게 일단 이유임
-
AU LY pc 8
왜 파섹만 소문자임 차별 그만!!
-
덜려라 하니 2
ㅈㄱㄴ
-
이대 논술 6
답 나오는것만 복기 1) h(0)=0 h(3)=파이/6 2a+b 2) a-1...
고급수학러지만 행렬, 극좌표밖에 안 배웠습니다,,
그것은 고수1 고수2해서 해요 쌍곡함수는
고급수학 2도 있나요? 그건 몰랐네요 ㅋㅋㅋ
재미있네요! ^^ 혹시 답은 e^10 인가요? ~~
저는 e^(19/2)가 나왔던 것 같은데,, 다시 확인해보겠습니다!
끄악 죄송해요! 2분의 를 계산하는 걸 깜빡했어요! ㅠㅠ
앗 그럼 옳은 풀이 같네요 ㅋㅋㅋㅋ
다른분들도 풀어보실 수 있게 최대한 숨겨서 여쭤볼게용...
(e) ^ (0 + 9 + 1/2 - (-1/2))로 푸는 것 맞는지요?
네, 그 방식 맞습니다! e의 정의를 활용하기 위해 지수에 어떤 작업을 해주어야 하는지, 미적분에서 다루는 '초월함수의 극한'을 다루기 위해 지수에 만들어질 분수식의 분모 분자에 어떤 작업을 해주어야 하는지를 알아내어 적용하는 것이 출제 의도였습니다
좋은 문제 주셔서 감사합니다 선생님! ^_^
풀어주셔서 감사합니다!
그냥 로피탈 하니까 e^19/2나오긴하는데..대학가서 미분적분학 배웠더니 e정의를 까먹었어요...
e = lim x->0 (1+x)^(1/x)
= lim f(x)->0 [1+f(x)]^[1/f(x)]
아하 식변형 좀 하면 나오긴 하겠네요
교과서적 풀이가 중요한 문제라고 생각해서 오늘이나 내일 중 해설 남겨두겠습니다!