확률 문제 질문드립니다
게시글 주소: https://w.orbi.kr/0006132247
[1 2 3 4 5 6 '7 7' 8 9 10 ] 이렇게 11장의 카드중에서 3장을 꺼낼 때 가장 큰 수가 7일 확률은?
학교에서 선생님이 내주셨는데
(7C2/11C3)x1/2 이렇게 식 세워 풀어서
7/55 가 나왔는데 어떻게 틀린거고
올바른 풀이가 어떻게 되나요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
환산점수컷 0
23때가 비교적으로 수능쉬웠던거로 아는데 왜 제가 보는대학들은 대부분 22,24보다...
-
일단 이력서 열심히 쓰는 중인데 지방에서 겨울 보내고 다시 서울 대학으로...
-
난 서울로갈거임 3
ㅅㅂㅅㅂㅅ
-
지1 -> 물2 0
이제 현역된 현 고2인데요 지금 내신으로 물1, 지1으로 하고있는데 물리는 적성에...
-
군대가야하는데 종류가 많아서 헷갈리네요 ㅠㅠ
-
동덕여대vs부산대라도 동덕여대 고민하는게 ㄹㅇ 심각하다
-
멍청이 나형러에게 사배자 나형 전형 부활 점 ㅠ
-
문제는 쉬운듯 하나빼고 다품 미적 마지막
-
시험 내용 지금 말해도 괜찮음?
-
흠ㅋㅋㅋㅋㅋㅋ 솔직히 과목이 너무 쉽긴해서 쫄리네
-
하루에 공부 6~7시간이면 수학은 몇시간 정도가 적당한가요? 3
지금 하고 있는 수학은 수분감 0단계, 학원 숙제 이 두개 하고있는데 수분감...
-
컴 소프트 전전 많이 힘들겠죠…? 생지러라서..
-
대학이 높을수록 길이 많아지는건 맞아도 그게 전부가 아닐뿐더러 오히려 수능을...
-
물화에 비해 표본 크게 안 오른 것 같은데
-
대구물가머노ㄷㄷ 1
칼국수가 5000원이네 칠성시장에서
-
냥대 상경 수리 6
1번 1번 최대 x=8 최소 x=6맞나유?? 구간 [-2,3] [4,8] 나오던디...
-
충북대 1
충북대 2027년에 교통대랑 통합해서 교명도 바꾼다는데 안가는게맞겠죠?
-
얼마나 옴? 우리 고사실은 25명중에 5명 옴 ㅋㅋㅋ
-
얼마나있나요? 지금 출발하셧나요? 어디쓰셨나요?
-
장난아냐
-
뭐 이번에 탈출이 가능할진 잘 모르겠는데 나처럼 우연의 연속이 계기가 된 사람이 얼마나 될까...
-
냥대 상경 0
답만 틀리거나 2번에 약수 하나 빼먹은거 과정은 다 맞았는데 부분점수 주나?ㅠ
-
도대체 사랑이 어떤거길래
-
대학들이 하고 싶다고 할 수 있는게 생각보다 없음 15
고개를 들어 용산과 교육부를 봐야,,,
-
이번3월 모집 지원예정인데 만약에 공군 떨어지면 해군 수송 넣을듯요 육군 TOD도...
-
부산시 현역 1
수필 3합4 과탐1개 250명 정도 맞췄대요.. 이 중에 내신 나보다 높은 애들은...
-
ㄷㄷㄷㄷㄷㄷ
-
답안지 걷는데 다들 3문제 다 꽉 채워있었음 오히려 1번에서 판가름날듯
-
근데 이거 변표는 작년기준으로 계산하는거임??
-
지듣노 2
ほら あなたにとって 호라 아나타니 톳테 봐, 너에게 있어서 大事な人ほど...
-
파경 쓴사람 0
다 맞으신분?
-
윤도영 갬성으로 해야 하나요? 대충 들어보니 쉽지않은 성적대긴함
-
일단 저는 19군번 특기시험 전투지원, 사무관리 한자리수 등수 항공정보운영 군수해서...
-
냥대 상경 3번 16
점화식 어떻게 푸셨나요 다들 한양대 수리 논술 인터칼리지 상경
-
작년에 정시로 연세대 공대 입학한 ‘일개’ 학생이지만 여러 부분에서 연세대 입학처에...
-
파경 인칼쓸걸.. 싯팔!
-
물론 채점결과 나와봐야겠지만 이제 거의 안변하던데
-
확통을 잘하긴 하는데 실수가능성도 있고 표점이 너무 낮아서 바꾸려 함 2사탐이고...
-
77/27맞나여
-
논술 출발 0
칙칙폭폭
-
출처:한국교육개발원 인하대 과기대 아주대 가성비가 좋네요! 인하대는 이공계 비율이...
-
ㅎㅇㅌ 전 걍 혹시나 해서 보러감 ㅎ
-
무난하게 젤리케이스? 뭐 살지 모르겠넹
-
그냥 떨어지는건가욤..? 부분점수라도 노릴려고 한 두 줄 쓰고 냈는데.. 아무래도...
-
냥대 인터칼리지 9
고사장에 다들 얼마나 왔나여 제 고사장에는 37명 고사장인데 18-19? 옴
-
물2러분들 2
시작은 어떻게 했어요? 개념서 뭐 쓰나요?
-
재수 예정인 06입니다. 문과 전향 예정이라 인문, 상경 논술 준비해 볼까 합니다....
-
후기있나요
14/55 맞나요?? 불안하네요 ㅠㅠ
먼저 8,9,10은 7보다 크니까 제가 원하는 배열에 포함되면 안되겠네요. 가장 큰 수가 7이어야 하니까 1~6은 막들어가도 상관없고, 7이 꼭 포함되어야겠네요.
저는 7 두개를 서로 다른 것이라 인정하고, 네모 세개그려서 풀었어요
ㅁㅁㅁ 여기서 7을 고정으로 선택하고 다같이 나열하면 되니까
7ㅁㅁ, ㅁ7ㅁ, ㅁㅁ7 모두 동일하니까 먼저 3
나머지 두칸에 7개의 숫자를 배열하는 가짓 수 7*6
그리고 7이 두개이니까 바꿔서 다시 2
그래서 2*3*7*6/11*10*9(11P3) 하면 14/55가 나와요
만약 조합을 이용해서 푼다면..
ㅁㅁㅁ 여기서 배열 가능한 가짓수는 11C3이고요
7을 하나 박아놓고 두칸을 채우면 되니까 7C2가 나오고, 7이 두개니까 2*7C2네요
그러면 확률은 2*3*7/3*5*11 똑같이 14/55가 나와요
맞나 모르겠네요 ㅠㅠ
밑에님 댓글보니까 제가 식을 잘못세웠네요.. 2*7C2로 하면 3개중에 7이 두개들어갔을때 7끼리 바꿔도 똑같으니 잘못된거네요 ㅜㅜ 밑에분 풀이가 가장 깔끔한거같고 ㅁ77일때 6C1, ㅁㅁ7일때 ㅁㅁ에 6개중에 2개 선택하니 6C2, 7끼리 바꿀 수 있으니까 2*6C2+6C1, 66이고 전체가 11C3이니 12/55네요 ㅜㅜ 박수칠님 감사합니다!!
네~ ^^
아아 그래서 2*7C2 가 안되는군요! 아랫분 풀이보고 이것처럼 식세워 봤는데 왜 안되나 고민했어요 ㅋㅋ
수학적 확률을 적용하기 위한 전제조건은
(1) 각 근원사건이 동시에 일어날 수 없다.
(2) 각 근원사건이 일어날 가능성은 같아야 한다.
입니다.
여기서 (2)에 부합하려면 7이 써진 2장의 카드가
서로 구별이 안됨에도 불구하고 서로 다른 카드로 취급해야 합니다.
그래서 두 장의 7을 7'과 7"으로 구별하면 근원사건 { 1-2-3 }, {1-2-7'}, {1-2-7"}이
나올 가능성이 같아지면서 수학적 확률을 적용할 수 있게 되죠.
다음으로 가장 큰 수가 7인 경우는
선택된 세 장의 카드에 7’이 포함될 때, 7”이 포함될 때, 7과 7” 모두 포함될 때가 있고
각 경우의 수는 6C2, 6C2, 6C1입니다.
따라서 구하는 확률은
(6C2 + 6C2 + 6C1) / 11C3 = 12/55
가 됩니다.
우와 이렇게나 자세히!
저렇게 나눠야만 하는군요
아직 확률 감각이 많이 부족한가봐요ㅠㅠ
확률에서는 같은 물체도 항상 다르게 봐야 하는 건가요?
우와 이렇게나 자세히!
저렇게 나눠야만 하는군요
아직 확률 감각이 많이 부족한가봐요ㅠㅠ
확률에서는 같은 물체도 항상 다르게 봐야 하는 건가요?
위에 설명했듯이 수학적 확률에서는
각 근원사건이 일어날 가능성이 같아야 하기 때문에
똑같이 생겨서 구별되지 않는 대상들을 서로 다른 대상으로 봐야하는
경우가 대부분입니다.
간단한 예로 상자 안에
1이 적힌 공이 한 개, 2가 적힌 공이 두 개, 3이 적힌 공이 세 개,
4가 적힌 공이 네 개, 5가 적힌 공이 다섯 개 있다고 합시다.
(각 공의 크기와 모양은 완전히 일치)
이 중에서 한 개의 공을 뽑았을 때
그 공에 3이 적혀있을 확률은 얼마일까요?
(1) 같은 번호가 적힌 공을 구별하지 않을 때
다음과 같이 5가지의 근원사건이 나타납니다.
1이 적힌 공이 뽑히는 경우 1가지
2가 적힌 공이 뽑히는 경우 1가지
3이 적힌 공이 뽑히는 경우 1가지
4가 적힌 공이 뽑히는 경우 1가지
5가 적힌 공이 뽑히는 경우 1가지
그래서 3이 적힌 공이 나올 확률은 1/5가 되죠.
하지만 1, 2, 3, 4, 5가 적힌 공의 개수가 달라서 각 공이 뽑힐 가능성이
모두 다르기 때문에 위의 조건 (2)에 어긋나서 틀린 답이 됩니다.
(2) 같은 번호가 적힌 공을 구별할 때
다음과 같이 15가지의 근원사건이 나타납니다.
1이 적힌 공이 뽑히는 경우 1가지
2가 적힌 공이 뽑히는 경우 2가지
3이 적힌 공이 뽑히는 경우 3가지
4가 적힌 공이 뽑히는 경우 4가지
5가 적힌 공이 뽑히는 경우 5가지
그래서 3이 적힌 공이 나올 확률은 3/15=1/5가 됩니다.
이게 답이죠.
1이 적힌 공부터 5가 적힌 공까지 모두 세 개씩 있다면
같은 번호가 적힌 공을 구별할 때와 구별하지 않을 때의 확률이 같겠지만,
대부분의 확률 문제에서는 외관이 똑같이 생겨서 구별할 수 없는 대상이라도
서로 다른 것으로 취급해야 합니다.
전체 11개중 3개 선택 -분모-
7은 무조권 있어야하니깐 미리 하나 뽑아놓고
나머지 두개 1~7까지 중 두개 선택 -분자-
(조합인 이유는 순서는 고려 하지 않아도 되요
예로들면 7.7.3 이나 7.3.7 은 같은 경우죠
그리고 문제를 읽어 보면 우리가 구해야하는게
선택한것중에서 7이 가장크기만 하면되요 목적을 ! 잊지마세요~)
그럼 7C2/11C3 으로 세우신 건가요?
다시 생각해보니깐 제가 판단을 잘못했어요 ..ㅜ죄송해요 윗분 처럼 확률 정의에 따라 7 .7 같게 보면 안되네요 분류로 하는게 정의에 맞고 분류라는 확률의 목적과도 맞네요
2c1•7c2/11c3