이런 기출변형은 환영이지
게시글 주소: https://w.orbi.kr/00062015851
미적분에서는 기출되었으나 수1에서는 기출된 적이 없는 요소입니다.
일단 ㄱㄱ
(더 내리면 스포)
<힌트>
f(x)와 x축의 교점을 찾을 때 다음과 같이 하시면 되겠습니다.
f(x)=0, k cosx=(x-ㅠ/2)sinx, k/(x-ㅠ/2)=tanx 의 교점을 그려서 관찰.
그려보시면 알파와 베타가 ㅠ/2에 대해 대칭임을 알 수 있습니다. 두 함수가 모두 점 (ㅠ/2,0)에 대해 점대칭이기 때문입니다.
22년 4월 30번 미적분 문제의 아이디어를 빌려와서 고퀄로 변형해봤습니다.
cos과 sin으로 이루어진 식에서 tan를 만들어내어 대칭성을 이용해 근을 관찰한다는 아이디어가 신선한 문제입니다.
앞으로도 인상적인 칼럼과 자작문제 많이 올릴테니, 팔로우해서 확인해보세요!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
약대 ㅇㅈ 0
우오오오오옹
-
속아주는 척이라도 해주세요
-
앞으로 자작 국어 관련 내용 아니면 글 안 쓸 거임.. +) 제가 이상한 소리 하는...
-
파카= 잉크회사 0
파카는 좋은 잉크회사이다. 착한 파카는 죽은 파카뿐이다.
-
기를 썼네
-
덕코 내놧 7
내놧
-
정치커뮤를 하면 11
정치공부 직빵이에요 동시에 본인의 희망 학과가 사회과학대학 안에 있게 되는 경험을...
-
늘 느끼던건데 이름 귀여움 재료
-
첨언 부가함 1
참고로 메이저 지거국도 기준마다 ㅈㄴ 다름 애초에 부산대나 경북대같은 메이저 지거국...
-
ㅈㅂㅈㅂㅈㅂ....
-
극보수 극좌파 유튜버를 동시에 구독해서 영상을 주기젇으로 같이 보면 공부됨 +나무위키 —> 정잘알됨
-
무슨 짓을 해도 3등급이면 강의를 완벽히 체화하지 못했다고 생각하면 틀린 생각일까요?
-
모의면접 이거는 안해도되는거 맞나요?? 실제면접만 응시하면 되는거죠? 모집요강...
-
탄핵? 6
노무현 (이명박) 박근혜 (문재인) 윤석열 이제 다다음 대통령도 탄핵 되나
-
평가원 #~#
-
ㄱㄱ
-
하나도 모름..
-
尹대통령, 관저 나서며 "국민들과 함께 끝까지 싸울 것" 7
[파이낸셜뉴스] 윤석열 대통령이 15일 한남동 관저에서 이동하기 전 "국민들과 함께...
-
정치 공부는 뭘로 해야함..? 국회의원도 잘 모르고 암튼 여러모로 잘 모르는데
-
정치성향 중요하게 보려나
-
둘 중 어디 선택하나요? 이런 경우 지거국 선택하는게 좋지 않요까요? 수만휘에...
-
이유도 알려줘
-
겟도다제
-
자전거사고싶다 4
ㅠㅠㅠㅜ
-
스크류형 만듦샤 개 ㅅㅂ이네 또 고장남 뻐커 이 ㅅㅂ것들
-
미분이 진짜 꼴리는데 25
나의 천박한 손놀림으로 함수를 미분하는거지... 한꺼풀 한꺼풀씩 벗기다보면 그녀의...
-
중대 1시 조발 1
안 하나
-
이왜진
-
빅펌들어할때
-
아니면 일반전형으로 생기는거임?
-
옯스타이지만 이제 공부얘기만 올라오는 올브타에 대해서… 매일매일 수능전까지 하루도...
-
님들아 어제 올린 글이 단순 자랑글이 절대 아니라는 거 4
특히 공대 지망하는 수험생분들이나 공대 신입생들 위해서 미리 붙여두는 정보임 공대는...
-
한동훈은 1
그냥 민주당으로가라..
-
쪽지 주세요
-
캬 드디어 정신차렸구나
-
그녀가 숙소 잡았다는데 10
잘 될까요 낼 생일이라 부산 1박 2일 놀러감…0
-
mbc보고 1
채널에이도 보는게 좋은듯
-
엄청 세세한 분석은 오버
-
엄마<——최고의 요리사 그냥 goat.
-
미용실 예약함 6
반년만에 드디어 머리자른다 미용실 가는거 땜에 오랜만에 머리도 감음
-
올해도 2만명 따리던데... 이걸 해야되나 말아야되나 참 한국사 5등급인데 1년동안...
-
설사범 면접 2
잘 보면 가산점 얼마만큼 주나요? 성적은 안정권인데 궁금해서요
-
SBS가 가장 중립이라 생각함 그 (민주당 북한 차이나)방송국이랑 JTBC가...
-
안녕하세요 연고대 희망하는 예비 고3입니다 z점수 알고 싶은데 아무리 찾아봐도 잘...
-
최적T의 락당
-
사정비율 4
이거 너무 이상해요 단어바꾸면안됨??
-
이런 기능은 대체 왜 안만들까
-
콜드브루 맛있당 19
맛있어
-
프린트당이 있는데
3?
두달만에 푼 첫 문제라 삼각함수 값도 기억안나 경악..
문제 재밌고 좋네용
코사인으로 나눠도 괜찮은건가요?
코사인이 0이 될 수도 있는데 그게 좀 헷갈리네요...
알파와 베타를 구할 때에는 문제가 없습니다. 알파 베타 범위를 보면 코사인이 0이 되는 곳과 겹치는 게 없다는 걸 알 수 있어요.
반면 f(x)의 근을 전부 구하고 싶은 상황이라면, 제가 본문에 쓴 방식으로 구한 근은 f(x)의 모든 근이 아니에요. 말씀하신대로 코사인 값이 0인 x 중에서도 근이 나올 수 있기 때문이죠. 예를 들면 ㅠ/2가 있겠네요.
아 그렇군요 친절한 설명 감사합니다
그런데 코사인 값이 0이면서 동시에 (x-ㅠ/2)sinx의 값이 0이 되게 하는 x값은 오직 ㅠ/2만 존재하므로, 추가해야 할 근은 ㅠ/2만 있습니다.
아아 감사합니다!
딱 보자마자 작년 4월 30번이랑 9월 24번 생각났음 ㅎㅎ
몇 년전 가형 20번인가 거기서도 삼각함수x일차함수 꼴의 대칭 사용하는 거 나온 적 있어서 확실히 미적러들은 더 쉽게 보였을 수도
그쵸 미적에는 종종 나오는데, 수1에선 출제된 적이 없어서
수1 버전으로 변형시켜 가져와봤습니다 ㅎㅎ
근데 좀 어려웠나봅니다
조회수 대비 좋아요나 댓글이 적네요 ㅋㅋㅋ ㅠ
담엔 조금 쉽게 가야겠어요
기출 문제 풀고 이 문제 푸니 풀이가 바로 보이는데, 만약 풀지 않았더라면 풀지 못 했을 것 같네요.. 이게 기출의 중요성..?