2022 수능 수학 손풀이 (공통, 확통, 미적)
게시글 주소: https://w.orbi.kr/00062922276
2022 수능 수학 손풀이_울고있는치타.pdf
봄 날씨가 좋은데 2일 뒤에 5모네요 ㅜㅜ
다들 열공하세요!
(뭔가 패드 글씨 점점 좋아지는 것 같기두...ㅋㅋㅋ)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하나 당 1000원만 준다 해도 기꺼이 먹겠음
-
현역 확통 4등급이고 재수 1등급은 바라지도 않고 2등급 목표입니다!! 저에게...
-
난 진짜 키 신경 안 써 한 173만 넘으면…
-
우승ㅇ
-
시너지 많이 받는듯 얼굴은 피부,면도 깨끗이 정도만 유지하고
-
정시 23234 1
언미생지인데 어디까지 갈수있나요 건동홍은 갈수있나요 지구 잘하면 3뜰수도있음..
-
너무 배고파서 허겁지겁먹다가 이빨 나가버림뇨 어뜨캄뇨
-
내신 없이 누구나 갈 수 있는 영국 옥스포드, 캠브릿지 유학 알기 쉽게 알아보자! (오르비에 미국 영국 유학 프로그램 개설 강력 요력!!!) 1
출처 : 英옥스퍼드 학비, 美하버드 학비 어디가 더 저렴할까?...
-
수학 퀴즈 3
p^q가 유리수이도록 하는 무리수 p, q가 존재한다. (즉, 무리수의 무리수...
-
민트만 먹어도 좋음? 진짜로??
-
음식취향평가좀 1
물v비=식사는 비 후식은물 슈붕vs팥붕=팥붕 민초는먹을만함 데자와극혐함 솔의눈...
-
국어 90 2언매 수학 77 3 확통 영어 1 생윤 42 1 사문 45 1(2일수도…ㅜ)
-
기분 참 잡친다 0
오늘 원래 만나기로한 상대가 내가 화장하고 출발하려던 순간까지 답장없어서 걍...
-
음식취향 평가좀 12
민초좋아함 부먹 팥붕
-
팥시러함 2
팥죽 팥칼국수 팥빙수 아무튼 팥들어간건 다 시러함 그래서 붕어빵도 안 사먹은지...
-
생윤 만표 0
몇 일 거 같음?
-
ㅇㅇ
-
틀딱붕어빵은 3
반동이므로 전부 굴라그나 들어가세요 슈붕은 좋고 팥붕은 나쁘다
-
영어 4 라인 0
과상관없이 어디까지 가능할까요?ㅠㅠ
-
가채점 때에 비해 실채점 결과 만표가 비슷했나요 떨어졌나요?
-
6모 언미영물지 원점수(백분위) 1 3 3 3 1 94(100) 67(85) 73...
-
ㅈㄱㄴ
-
있으신 분 혹시 보내주실수 있나요…?
-
유대종 주간지는 하루 4지문이고 인강민철은 2지문이어서 인강민철로 2지문만 하고...
-
과탐 2등급 0
현시점 과탐 2등급 따기 제일 쉬운 과목? 아님 그냥 과탐 가산 버리고 사탐2...
-
화이팅 !!
-
수능 영어 2
1등급 6%대임? 맞다면 무조건 단국치 써야지
-
헉
-
최저 6개 썼는데 4개는 컷에 안걸쳐서 걍 무조건 맞춘건데 가고 싶은 2개가 컷에...
-
여기 슈붕 있나요 20
차단하게
-
ㄷ존경함
-
오르비는 오히려 더 활발해진 느낌
-
https://orbi.kr/00070222100/ 여긴 그래도 래커칠만 하고 본관...
-
수학... 0
수학은.. 어두운 방에서 스위치를 찾아서 불을 켜고 방안에 있는 답을 찾는 것...
-
ㄱㄱ학교만봄
-
오늘 부른 노래 2
Happy 한 페이지가 될 수 있게 눈의꽃 The great escape...
-
국어 - 김동욱 체크메이트,스위치온 + 일클 (수국김 여름에 들음) 강기본 고전시가...
-
제가 오리아나 같이 사이드가 약한 챔피언을 하면 바텀 라인을 못 밀고(나가면...
-
2026수능대비 UAA 컨텐츠들 전년과 같이 프로모터 시놉시스 어댑터 트레일러...
-
짜다 / 적당하다 / 후하다
-
션티 키스타트 12/6에 나오는 지 모르고 샀는데 다 못 끝낼것같아서 구매하실 분...
-
투과목선택자는 댓글로
-
성신여대에서도 “공학 전환 반대”···여대 전체로 번지는 ‘여대 존치’ 시위 5
동덕여대를 시작으로 확산하고 있는 ‘남녀공학 전환’ 논란이 타 여자대학에도 번지는...
-
그냥 입시와 거리두기중 진학사도 사긴했는데 억지로 안 보고… 현생에 집중하는 척 하면서 오르비하기
-
이거 일반 메가패스랑 따로 차이 없죠?
-
전장으로! 논술 전장 드가자~
기하 없어서 비추
기트남어는 수요가 크게 없어서...
제가 기하 공부를 다시 해야하는 부분도 있구요 ㅋㅋㅋ
Coi thường hình học à?
잘보고가요
공백이도 오늘 2022 수능 풀자 ㄱㄱ
맛있어요
선생님, 혹시 13번 저 풀이 현장에서도 충분히 떠올릴 만하다고 생각하시나요?
음 증거가 없어 보여드릴 수는 없지만 저는 현장에서 저렇게 풀었습니다
직선 위의 점들이 같은 x좌표에 y좌표만 2배니까 기울기 2배라는 점과 y좌표가 2배로 유지된다는 점을 먼저 확인합니다.
그 다음 ☆의 관계식은 (0,k)와 (a,log a)의 기울기 2배 관계식을 이용한 것과 같은 식이라 크게 기본 풀이에서 벗어나지 않는다고 생각합니다...라고 생각했습니다만
음 일반적으로 떠올리기는 쉽지않다 라고 생각하긴합니다. 그러나 또 떠올리기 어려울 정도..? 라고까지도 생각하지는 않습니다! ㅎㅎ
감사합니다! 저는 두 점의 좌표가 주어졌으니 직접 직선의 방정식을 작성하고 y절편이 일치함에서 관계식 하나, f 함숫값 조건에서 관계식 하나 얻어 a^b값을 결정하는 게 편안하게 떠올릴 수 있는 풀이라고 생각했었어요