7月 기하 28, 29, 30 Solution
게시글 주소: https://w.orbi.kr/00063723000
28. #이차곡선의 정의요소 # 사인•코사인 법칙의 도형 활용
28번은 이차곡선 준변별문항 역할을 잘 수행한 친구입니다. 주어진 기하관계에 주목해 삼각비를 추출하고, 수I의 사인법칙으로 연결하는 부분이 돋보이는 문제입니다!
#29. 벡터 방•부등식의 해석, #좌표계 변환
#30. 삼수선의 정리 #공간도형 해석 #겨냥(단면화)
29번에서 주목할 점은 반지름의 중점을 제시함으로써 필연적인 특수각을 이용하는것
명확한 수직의 틀이 보이니 성분화를 사용하기에 최적화된 세팅임을 인지하는 것입니다! 이때, 새로운 수직의 틀을 축으로 잡아 새로운 좌표계를 설정하면 편하게 평면벡터의 성분을 추출할 수 있습니다.
이 풀이가 사용된 또다른 문항이 궁금하시다면 아래 계시글을 참조해주세요! :D
일년전의 약연 vs 오늘의 약연
https://orbi.kr/00063067541/%EC%9D%BC%EB%85%84%EC%A0%84%EC%9D%98%20%EC%95%BD%EC%97%B0%20vs%20%EC%98%A4%EB%8A%98%EC%9D%98%20%EC%95%BD%EC%97%B0
30번은 전형적인 공간도형 해석으로, 주어진 평면과의 위치관계와 코사인 값을 추출할 끼인평면을 찾아내는것이 핵심인 문항이었습니다.
위에서 바라본 컷 한컷으로 평면도형 해석시 빗변에 내린 수직 소재가 쓰였다는 점도 주목할 만 합니다!
평소 종이에만 풀다가 태블릿으로 풀어보니 글씨가 많이 날아가네요오..
학원 마치고 풀어보느라 바로 올리지 못한게 아쉽네요
긴 글 읽어주셔서 감사합니다!
전국에 있는 기하 선택자분들 모두 파이팅입니다 >_<
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
여자랑 말을 좀 해봐야 알지 에휴 내 인생 끄악
-
하기 힘들까요??+알바
-
될거라고믿음
-
팔로우해도되나 너무 속보이는데
-
전 자러 갈게요 1
오늘 만난 옯둥이들 반가웠어! 앞으로 잘 지내자! 다들 잘 자요
-
다앙연히 "약대 아님 안가" 같은 목표는 아니고 그냥 고공 노리고 공부하다가 성적...
-
소녀시대, 티아라, 원더걸스, f(x) 등 누군가가 이걸 계속 틀더라
-
ㄴ...
-
출근이고 목 감기고 나발이고 다 때려쳤다
-
고려 한양 추합 0
고려대랑 한양대 공대쪽 (화/신) 충원율을 보면 작년에 유독 적게 돈것같은데 이유가...
-
그래서 저랑 동점인 진학사 표본들 간의 순위확인했음
-
표점 ㄱㅊ음?
-
일본 갔다가 여기저기 많이 갔는데 아직도 일본은 잊을 수 없음•• 혼자 여행가기 최적의 장소
-
전 일단 안할거임 보기만 할게요
-
좆목 좀 하지마셈 26
그걸 목까지 넣으면 목 막혀서 위험함... 입까지만 넣으셈
-
인증 에이블리에서 요즘 옷 와장창 사서 그냥 입어보고 있어요 사놓고 막상 어디...
-
연애가하고싶구나 4
고옥고옥
-
올해도좀...
-
적당히 마시셈 이런 거 말고
-
내일 러셀가야하는데 ㅈ댓다
-
ㅇㅈ 3
.
-
얼버기 13
-
존예 여르비만 ㅇㅈ해주세요
-
다른 ㅇㅈ 재탕 8
시즌 끝나고 새로운 사진으로 돌아올게
-
이왕이면 동물귀 달린 미소녀로…
-
오르비의 현실임 4
기만자와 ‘진짜’ 들
-
몇 개 합격 될까 투표 ㄱㄱ 가군 건국대 기계로봇자동차학부 나군 경희대 기계공학과...
-
독재+단과랑 다른게 있나요???오히려 필요한고만 들울슈있으까 좋운거같운데..!!...
-
기출은 웬만한거 다 풀었는데… 그냥 실모같은 거 모아둔 책 없나요 비문학 연습 하고...
-
안녕하세요 8
오댕이 임티 쓰고싶은데 폰이 고장나서 그 부분만 터치가 안먹어요...
-
그니까 점공 들어와주라...
-
제 뒤로 와주세요.... 하나씩 밀릴때마다 수명 주는느낌이네
-
아반떼 cn7 AD 중고 보는사람은 소나타 DN8하고 k3, k5 같이봐라 아반떼가...
-
보통 2학년 되기 전에 가나요 아니면 2-1은 다니고 가는 경우도 많은가요
-
ㅇㅈ 3
. 온점임
-
내신?....아님 3합 6이 되긴 하는데 국1 수4 생명1이라......좀...
-
근데 커뮤 특유의 말투 있는 곳이나 진입장벽 높은 곳은 못 끼겠음 ㅠ…씹덕얘기할...
-
느좋 민지 4
-
과잠 1
과잠 걍 편해서 입는건데 ㅋㅋ 남들 너네 어디다니는지 1도 관심없음 걍 대충입는옷임
-
예?
-
ㅇㅈ 6
재탕입니둥 맞팔좀 해주세요
-
ㅇㅈ 19
얼마전 생
-
이러다가 피 토하고 죽는 상상하게댐...
-
버려진 피죤투를 나도 버린다 끼요옷 귀여워 근데 얘 뭐라고 불러요? 진짜 모름..
-
ㅇㅈ 7
안경ㅇㅈ ㅋㅋ
-
생1은 1
논리와 귀류를 바탕으로 한 퍼즐풀기인가요?
-
지원하려는 학교 안정권 성적표 10~15개정도 사서 진학사에 싹다 알박기해놓으면...
-
참치 김밥 한 줄, 장국 한 사발이 먹고 싶고녀...
-
사귀고 싶은 사람이 있어
-
예를들어 모집인원 지원자 똑같을때 300명중에 200등보다 400명중에 200등이...
GOAT
보는 맛 나는구만
항상 댓글 남겨주셔서 감사합니다:)
ㅎㅇㅎ
혹시 기하 총평 내려주실 수 있나요 전 갠적으로 어려웠어서..
아 이번 기하는 29,28이 변별력을 충분히 갖추었다고 생각해요! 특히 29는 23수능 29번이랑 난이도가 비슷하다고 생각합니다
6월보다 훨신 까다로운 시험지에요!
ㅠㅠ많이 부족한 거 같네요 더 열심히 하겠습니다!!
저도 열심히 공부할게요
쓰러져가는 집 안에 우뚝 서있는 기둥 하나
이게 애니프사지~
특정완
ㄹㅈㄷㄱㅁ
기하 어떻게 공부하셨어요??
현역때 기출을 베이스로 기하 감각을 끌어올리고, 각종 N제/ 실모 풀고 나니 특이점이 오더군요..
낯설거나 신기한 기하 상황은 노트에 간단히 메모해 보관하며 통째로 외웠어요!
사례입니다, 23학년도 사관학교 29번이에요!
항상 댓글 달아주셔서 감사합니다! 승룡님
시간 무제한으로 주면(?)지금도
풀긴 할 것 같네요ㅋㅋㅋ
22 기하 그립구나…
내년에 의대가면 기하과외도 열어주실거죠?
내년에 후배로 찾아뵐수 있도록 열공하겠습니다
28이 되게 잘 만든 문제인듯한..
薬碾ちゃんは天才。
みずきさんがくれた褒め言葉はいつも感動です。
팀 기하 파이팅 9평때는 정상적인 문제 배열로 나오기를 ㅠㅠ
헉 저도 수학 100점 맞고 연약갈래용
대 대
30번 마지막에 법선벡터가 이루는각으로 처리하니까 깔끔하게 나오더라고요
오 님도 공간벡터로 푸셨구낭 헤헤
나도 ㅋㅋㅋ 전 교육과정것 알면 sol) 하나 더 가지고 있는거임
이번 7모 퀄리티가 아주 좋죠 ㅎㅎ
기벡 29를 공간벡터 버전으로 응용해서 문제 몇개 만드려고요
기하 응시자수가갑자기 급발진해서증가하면좋겟다
기하추
기하 표점만점 150기원