예시 문제로 보는 잘못된 기출 공부 방식(23년 6월 14번) - 혹시 이렇게 하고 계신가요?
게시글 주소: https://w.orbi.kr/00063946610
잘못된 기출 공부 vs. 올바른 공부
안녕하세요
기출 공부를 어떻게 해야할지에 대해 쪽지가 너무 많이 와서
생각나는대로 예시를 보여드리려 합니다
여러분에게 익숙한 문제로 예를 들어볼게요!
2023년 6월 시행 속도가속도 문제입니다.
이 문제를 함께 풀어볼게요
우선 속도 그래프가 4차로 주어져 있습니다
수직선에서 운동방향은 v의 부호가 결정하죠?!
그래서 v가 t축을 뚫고 지나가는 순간이 운동방향을 바꾸는 순간입니다
(추가로 v는 위치 x의 도함수이므로 위치 x의 극점인 순간이 운동방향을 바꾸는 순간으로 해석할 수도 있습니다)
문제에서 운동 방향을 한 번만 바꾸도록 하라고 했으니,
v(t)의 그래프가 그리고 싶어야 하고
v(t) 그래프가 t축을 뚫고 지나가는 순간이 t=0 이후에 한 번만 있어야 합니다!!
즉, 접하는 순간이 많아야 한다고 생각이 들 수 있겠네요
이게 이 문제의 기본적인 틀인데
공부 할 때 여러분의 잘못된 사고 메커니즘과 올바른 사고 메커니즘을 알려드릴게요
빙의 한 번 해보겠습니다
(최악)
아 이거 알아
a=1 일 때 위치 변화량(정적분) 최대임
v(t) = -t(t-1)^2(t-2) 적분하면 답 나옴
~~계산
끝!
아 역시 난 잘해. 풀이랑 답 상황 기억나니까 지루하네, 나 기출은 이제 그만 풀어도 될 듯(ㅎ,,)
=> 대부분 이러십니다
(최악은 아니지만 부족함)
운동 방향을 바꾼다는 표현이 나왔으니 난 뭘 생각해야하지?
-> v(t)의 부호가 바뀌거나, x(t)가 극점을 갖거나였지?
그런데 그게 한 번만 있으려면?
사차함수 v(t)의 그래프가 대충 이렇게 되어야 할 것 같은데?
그런데, 0~2 정적분 값이 최대이려면 다 양수인 가운데 케이스가 유리하겠네?
a=1일 때 최대일 거 같긴 한데.. 일단 구해보자!
~~계산 => 답에 있음
오키 맞겠지 뭐 => 맞음 => 추가 생각 없이 넘어감(그나마 2등급까지 오를 가능성 있음)
(good)
운동 방향을 바꾼다는 표현이 나왔으니 난 뭘 생각해야하지? -> v(t)의 부호가 바뀌거나, x(t)가 극점을 갖거나였지?
그런데 그게 한 번만 있으려면? 사차함수 v(t)의 그래프가 대충 이렇게 되어야 할 것 같은데?
그리고 이건 기출문제들 중 극점을 한 번만 갖을 조건하고도 연관이 있네?
속도 가속도의 형식만 빌렸을 뿐, 사실상 도함수를 활용해 원함수의 개형을 추론하는 문제랑 요구하는 능력이 같구나
평가원이 이걸 자주 강조하네!
그럼 이 세가지 케이스 중 정적분 값 최대는 언제일까?
음.. 양수인 부분만 있을 때가 최대일 것 같기는 한데 혹시 모르니 다 계산해보자
~~(3가지 케이스 모두 계산)
아 역시 양수인 부분이 최대네!
(very good)
(good) 상황처럼 풀었다고 가정
(+)
1. v(t)의 개형에 따라 운동 방향을 바꾸는 횟수가 달라질텐데 이 개형은 a에 따라 달라지겠네?
=> a에 따른 운동 방향 바꾸는 횟수를 새로운 함수 g(a)로 정의할수도 있겠다.
평가원이 이런거 좋아하니까.
한 번 a의 범위(구간)에 따른 g(a)를 생각해보자
=> a에 따른 모든 그래프 케이스 그려보고 케이스별 운동 방향 바뀌는 횟수 몇 번인지 읽어보는 훈련을 함
2. 내가 시험장에서 세 가지 케이스의 정적분을 따로 계산해서 비교해버리면
정답에 확신을 가질수는 있겠지만 너무 시간이 오래 걸리네.
그렇다고 최대일 것 같은 순간이 선택지에 있는데 그걸 찍고 넘어갔다가
다른 상황이 최대여버리면 틀리게되니까 확인을 안하기도 낭패일 것 같고..
조금 더 정적분 값이 최대인 케이스가 언제인지 빠르고 깔끔하게 확인할 방법이 없을까?
=> 고민 + 선생님께 질문해서 케이스별 빼기함수의 정적분으로 이해하면 된다는 것 이해
=> 아! 맞아, 무언가 크기 비교를 할 때는 빼보는 것이 기본 개념이었지!!
교과 개념이 여기서 또 활용되네.
이런 아이디어에 대해 뼈에 새기자! => 진짜 새겨짐
3. 정적분 계산할 때 평행이동해서 더 쉽게 계산하는 것을 배웠었는데 혹시 활용할 수 있는 상황인지 고민해볼까? => 사차 함수 대칭성 활용해 평행이동으로 더 쉽게 계산 => 상황을 보는 눈 길러냈음
(very good) 상황은 제가 재수 할 때 실제로 사용했던 방법입니다.
물론 지금 저의 기준으로 생각했을 때는 그 때의 저도 빈틈이 많았으나(그래도 100점은 계속 나왔습니다)
적어도 저런 방향으로 공부하려고 수학, 과탐 모두 노력했었습니다.
여러분, 기출은 이렇게 공부해야 합니다.
신기하게도 이렇게 공부하면 두 번을 보든 세 번을 보든 같은 문제를 공부하는데도 새로운 관점이 다양하게 보이고 문제가 재해석 되는 경우도 많습니다.
특히 어려운 문제일수록 새로운 관점이 보여서 무기가 많아져요.
이게 다른 풀이를 배우거나 들어봐서 “이런 풀이로도 풀 수 있다”를 아는 것과는 차원이 다릅니다.
나의 실력이 쌓이면서 새로운 시야가 트인 것이거든요.
요즘 기출 공부를 강조하는데, 어떻게 공부해야 하는지 여러분에게 와닿게 설명할 방법이 무엇일까 고민하던 차에 조깅하다가 갑자기 이 문제로 설명하면 좋겠다고 생각이 났네요.
또 생각나면 다른 문제로 적으러 올게요 :)
다들 본인이 위의 네 가지 경우 중 어디에 가까운지 생각해보시고 잘 공부해보시기 바랍니다
0 XDK (+1,000)
-
1,000
-
좋아요 0 답글 달기 신고
-
부산대 합격생을 위한 노크선배 꿀팁 [부산대 25학번] [새내기를 위한 교과목 이수법: 교양필수편] 0
대학커뮤니티 노크에서 선발한 부산대 선배가 오르비에 있는 예비 부산대학생, 부산대...
-
프사가 없는게 너무 슬픔 고정짤 써야하나
-
올해 여대 0
입결컷 떨어질까요…ㅜㅜ 이대 기준으로요 ㅠㅠ 낙지 5칸 뜨는데 불안불안하네여…
-
경영 경제 합격자 기준 정시에서 20프로 정도는 교차인가요? 서강은 비율이 좀 더...
-
매일 쫄려요... 이 성적 매우 쫄리고 애매해요 ㅜㅜㅜ
-
자기 친구가 유부남한테 끌려다니다가 차였다던데 대사도 "아직내가준비가안되었어...
-
고1, 2 모고 고정1 / 고3 모고 1~2이 였음 한동안 영어 안해서 감 다...
-
변호사랑 같이 하는거겠죠 저번엔 돌발성으로 한거같던데
-
재수-> 성균관대 자연과학계열(합격) 군수-> 약대를 노리고 응시했지만 또 성대...
-
언급도 안된다 언급이 된다는건 아직 아닌거임 더 익어야함
-
해운대 도착 9
일단 밥부터
-
수능에서 수핫 1~2받으려면 고1수학 어느정도 까지 되어있어야해요? 고1 자이사서 푸는게 좋을까요?
-
날 대신해 그녈 영원히 지켜줘야 해요
-
현역 생2고민 1
유전이 좀 안 맞아서 지1생2로 틀려는데 괜찮을까요? 26수능은 생2 2등급...
-
이래야만 합니다
-
그런 새끼들이 사고치는 거는 역시 과학이다. 익숙한 것을 고수하는 이유가 뭐겠나?...
-
내신 2.42.... 영문과 붙을 수 있을까
-
작수보다 확통 쉬워지고 표본 올랐고 1~19번, 22번 난이도 내려갔고 20번...
-
십덕의 오노추 3
Loote-tommorrow tonight
-
아내가 78명?
-
나에게 천사가 내려왔다 보는중
-
지금 정시성적으로 고려대 경영학과 노릴 수 있을거같음 이거 고대 경영 25학번으로...
-
스쿨데이즈로 입문한 사람으로서의 조언임......
-
기출회귀 0
초심으로
-
막상 수능끝나니까 침대에서 폰만 함 친구들이랑 노는것도 몇번 놀다보니 귀찮고 공부할...
-
작년에 유일하게 재종 지각이 눈 때문에 버스가 예정보다 1시간이나 더 걸렸울때...
-
정리해보니 너무 적어서 안 올려야겠음 나 왤케 나태해 이러니깐 삼수하지
-
지방의 3칸 0
더 오를 수 있을것인지..
-
전쟁의 새로운 시작을 알리는 기자회견인가 전쟁의 끝을 알리는 기자회견인가
-
건대 목표로 재수했는데 건대는 힘들겠죠..?
-
에렌이 바로 앞이다!!
-
닥 건국인가요 집 수도권인데
-
오르비를 하는나!
-
대학보내줘....
-
죽을거같다
-
여기 갈까 10
-
이거 반영 안하고 정원수 30%만 합격주고 이런거 아니겠죠? 진학사가 다들 짜다 그러길래
-
현역 가천대 재수 국민대 삼수째에 중대 인문이랑 경희대 상경 붙어서 경희 갔고 학교...
-
. 내가 고양이 인건 어찌알고 크컄캬캭
-
이사람은 걍 레전드네
-
빌런즈 없어졌네 1
삭제하는건가 아니면 올해거로 계속 가는건가
-
재종
-
1. 역덕 땜에 1어렵다는건 좀 과장된거 같다. 2. 개념이 90이라고 하는데 맞긴...
-
너튜브 알고리즘 8
어라라.. 광고놈은 스파이 아니냐.. 왜자꾸 나 수능보라고 꼬시냐..
-
오.....
-
한라산 쪽 말고 바닷가 쪽도 눈 내리게 해 주세요
-
피곤해서 잘듯
-
대 대 대 ㅋㅋㅋㅋㅋ
-
사물함에서 체육복이나 담요 꺼내서 냄새맡아본적 한번씩은 있지 않음?