(강사)님들 변수 그렇게 잡는 거 맞나요?? 24학년도 9월 미적 30번
게시글 주소: https://w.orbi.kr/00065746257
강사 포함 상당수가 이렇게 풀었을 것이다. 최초풀이일수록 더더욱.
(각PCQ=2theta로 잡아서 넓이 표현하면 대동소이하나 조금 낫다)
여기서 원의 중심 O를 잡아서 삼각형 PCO에서 PC=x, CO=1, OP=5이므로, theta에 대한 코사인법칙을 써서
상황에 맞게 대입하면
가 된다고 한다....
잘 정리해서 되게 그럴듯한 풀이가 되었는데, 실제로 해보면 계산이 상당히 많고 복잡하다. 그 이유는, S도 x와 theta 두 변수를 쓰고, x와 theta도 관계식이 음함수 형태로 되어 있기 때문이다. 이걸 하나하나 곱의 미분 안에서 음함수 미분을 두 번이나 각각 해서 구해야 하므로 계산이 많고, 변수가 난립한다. 루트가 근인 이차방정식은 덤이다. 여기서 오는 압박과 음함수의 생소함이 과연 출제 의도인가?
그리고 근본적인 질문. 왜 x를 PC로 두는가? 전혀 그 이유를 알 수 없다. S를 두 변수로 된 함수로 굳이 만들고 계산을 복잡하게 할 뿐이다.
그렇다면 무엇을 변수로 세팅해야 하는가? 그것은 S를 잘 표현할 수 있는 문자로 가야지, 아무거나 골라 잡아서 계산을 길게 만드는 짓을 했더라도 이게 아니다 싶으면 돌아와야 한다.
S는 무엇으로 만들어 지는가? 점 P이다. 점 P는 어디 있는가? 원 위에 있다. 원 위에 있는 점은 어떻게 표현하는가? 중심각을 이용하여 sin과 cos으로 나타내는 것은 교과서적 기본기이고 근본이다.
그렇다면 변수를, 마치 AB가 x축일 때 마치 좌표로 P(5cos(t), 5sin(t))하듯이 각 POB를 t로 두면 된다.
얼마나 깔끔한가? 하나의 변수로 되어 있는 이 식이 S 표현 방식의 근본이라 할 수 있다.
또한, 원하는 미분변수 theta는 t와 어떤 관계가 있는가?
사실상의 양함수 표현 두 개, 분리된 변수 관계가 얼마나 깔끔한가? 여기까진 중3도 대답 가능하다. 심지어 동일한 항이 반복되는 형태까지 매우 그럴듯하다.
(정확히 말하면 theta가 90도 근처 예각이면 t가 둔각일 때도 되지만, 그냥 theta가 45도 근처라고 하자)
이렇게 식 두 개로 딱딱 세팅을 하는 게 누가봐도 정답이다. 두 변수로 난립하는 식이 아니라. 아까 식이 더러웠던 이유는, 각도와 길이를 억지로 엮어서이다. 각도는 각도로 엮는 게 맞지 않나.
뭘 해야 할지도 눈에 선하다. 여기서 theta에 대한 미분을 해야 하지만, 둘다 t에 대한 미분을 하도록 하자. '관계만 알면 변수는 나중에 바꿔도 된다'는 게, 미적분 수준의 미분법 기본 개념이다. 해 보면 계산이 아까보다 훨 낫고 익숙하다. 변수가 분리되어 관계가 바로 보이기 때문이다.
이제 theta=45도일 때, t를 알아보면, P에서 AB에 내린 수선의 발을 H, P와 AB 사이의 거리를 h라고 하면, PH=CH에서 OH=h-1, 이므로 직각삼각형 PHO에서
이고 h는 굳이 전개하지 않아도, 누가 봐도 4이다. 그럼
이므로 이거 대입하면
이다. d(theta)/dt, dS/dt를 아는데 원하는 게 dS/d(theta)니까, 둘이 나누면 된다. 우린 이걸 매개변수 미분이라고 부르기로 했다.
어떤가? 두 변수를 분리해서 미분이 훨씬 깔끔하며, S와 theta를 각각 따로따로 생각하므로 헷갈릴 일도 거의 없다. 45도일 때 P의 위치 알아낼 때 이차방정식이 깔끔한 것은 덤이다.
미적분의 미분법은 변수 관의 관계만 알면 다른 변수로도 미분이 가능하다. 그렇다면 그 변수를 어떻게 잘 세팅하냐에 따라서 계산량과 시간의 압박, 나아가 시험 전체의 운영에 영향을 미친다고 볼 수 있다. PC를 x로 두는 건 연역적/논리적이지 않으며 결과적으로도 이익이 되지 않는다. 학생이 이랬으면 읽어보고 다시 잘 생각해보고, 강사가 제공하는 풀이가 이랬다면 그 강사는 반성 좀 하자.
(수정: https://www.veritas-a.com/news/articleView.html?idxno=471655 <-그냥 9월 미적 30번이라 구글했더니 나왔다. 들어가보면 교육 관련 신문 칼럼이라는 곳에서도 ('코사인 법칙' 썼다고 하니) 이 방식대로 풀었다는 것 알 수 있다. 나만 이거 생각한게 아닌거 아는데, 많이들 이렇게 했다는 자료로는 충분하다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
땄다 0
-
이렇게된거 중전전으로 간다.. 진짜 미쳤네 ㅋㅋㅋㅋㅋ
-
아오 ㄹㅇ 저것땜에 대학들 한칸~반칸은 밀린 것 같네
-
물리학I (만표 : 67)(만백 98) /1컷 48/2컷...
-
예비고3이고 지금 수2시발점이랑 쎈 방학전으로 거의 다 끝나가는데, 방학하고나서...
-
실전개념<< 0
인강강사들이 만들어낸 허상에 불과함 스킬=실전개념임 난 그래서 알텍들을꺼임
-
계속 개념 까먹어서 사탐 공부한지 4개월이 지났는데도 완벽하게 마스터 못했는데 뭐가...
-
아님말고 더 어렵게낼 수 있을거같았는데
-
그런 이상한거 하나 있으면 ㅈㄴ 말림 +미적 풀 시간 부족으로
-
27442 대학 1
어디가나여…
-
얼마전에 친구한테 들었는데 컷이 미쳐날뛰더라고요? 그만큼 공군 준비하시는 분들이...
-
생1 처음 할 때 그 개념량 다시 생각해보면 어케하노 싶기도 하고 그래
-
실시간으로피말리네..........
-
니폰,,,,
-
잘.
-
옯스타만듬뇨 7
인스타 첨해보는데 가이드해주실분구해요 homecominginstinct <-- 이거임뇨
-
그런자산을찾고있음뇨
-
축하드립니다! 20
당신은 따봉도치의 행운을 받았습니다 좋아요를 누르고 댓글로 "따봉도치야 고마워"...
-
D-346 공부 1
-
사탐 시작 시기 5
07이고 사탐은 한번도 안해봐서 언제 시작할지 감을 못 잡겠음 사문은 고정이고 정법or한지 예정
-
히히 포스티잇에 적은 다짐도 함께.. 뭔가 만년필을 사서 필사하는 취미를 가지고...
-
맞89 0
-
사탐 경한이 3칸밖에 안 뜨는구나….
-
하나쯤 있어야 했음..아무리 6모랑 수능이 표본차이가 있다고 해도 저런 거 한...
-
송파재수학원 1
주변 지인이 다닌 학원인데 이름이 뭔지 기억이 잘 안 나서 듣기로는 독재였는데 수업...
-
제목이곧내용.
-
ㅈㄱㄴ
-
ㅋㅋ 6
이런애를 미리손절안한 내가 잘못인가
-
어림도 없었음뇨.. ㅇㅇ 물론 4가 될만한 4가 아니긴 했음 표본분석 잘하면...
-
키워드 하나 눌러서 게시글 몇개 봤는데 댓글들이 ㅈㄴ 가관이네 ㅋㅋㅋㅋ 커뮤에서는...
-
어??..
-
ㅅㅂ?
-
일본만 2번갈수도
-
주요질문 : 1. 설의가려면 투과목 하나 이상은 해야하나요? 2. 화미화1생1하면...
-
나오면좋겟음
-
흐흐흐
-
예비 고3이고 이번년도에 교재풀패스를 사문생윤 둘 다 삿는데 이번년도 안에 다...
-
정부가 "징그럽다. 이래도 지방 안 내러와? 이래도 서울에서 애들 교육시킬래?"...
-
미적88에서 왜 갈라졌으면좋겠냐 수능최저 수포함 3합3이라 내가 굉장히 유리해져서...
-
술 모텔 집 술 모텔 집 이 사이클이 일반적인게 맞음?
-
지금 그대로인가
-
능지딸리고 어린애기들이 듣기엔 너무 수준높은분이셨지;; 그래서 맨날 꼴타에계셨제...
-
잇나여?
-
저희동네는 대충 4:6정도인듯(문과4) +재종 다니시는 분들께는 재종 내의 비율이 궁금함
-
국어 현강이 1월부터 시작이라(정석민) 귀찮아서 수탐공부나 열심히하려고하는데...
-
도와주세요)외국 대학 편입, 반도체학과,나노공학과에서 필요한 지식 0
안녕하세요. 한국 내에 대학교 인문대에 재학중인 학생입니다. 인문대에서 과탑을 하고...
-
국힘에서 26년 증원없는 3058명안을 제시했고 교육부도 실무적으로 가능은 하다고...
-
신입생 나이 0
여태까지 보신 신입생 나이 중에서 몇살이 최고령이셨을까요? 23살 이상부터 부탁드리겠습니다!
전 첫번째로 풀고 무한계산조짐 하
이거 계산 빡세겠다 싶을때 돌아와서 간단한 계산(사실상 양함수)으로 돌아가는 게 실전에서 가능할까? 싶긴 함
그리고 솔직히 빡센계산 하다가 포기한게 대부분인데 그 계산 억지로 밀고나가는 해설, 이거 의미있는건지 다시 잘 생각해봐야됨