[수학] 1등급이라면 보이는 것들
게시글 주소: https://w.orbi.kr/00067081301
안녕하세요 오르비 수학강사 이대은입니다.
오늘은 한 문제의 예시를 통해
1등급인 학생들의 특징인
수학문제를 풀 때 시야각이 넓은 것의 중요성
에 대하여 소개할게요!
그럼 바로 시작하죠!
먼저 문제부터 봅시다.
풀이가 쉬운 문제를 통해 이해하기 쉽도록 설명힐게요.
어려운 문제엔 보다 더 큰 효과가 있습니다!
풀이가 두 개입니다!!!
위 문제의 일반적인 풀이는
아래의 내용만 체크하면 되는데요.
이 내용을 토대로 풀이를 시작하면
이와 같은 풀이가 됩니다.
.
.
.
.
.
.
.
.
.
.
.
.
그런데
1등급인 학생들이라면
즉, 문제를 바라보는 시야각이 넓은 학생은
조건을 바라보고 아무생각 없이 대입부터 하지 않아요.
위 세 가지 논리를 이용하면
다음과 같은 풀이가 가능해요.
이 세 가지 논리가 이 문제를
가장 효율적으로 푸는 논리예요.
특히 1번이 가장 중요한데요.
2, 3번은 1번이 보인다면 무난하게 떠올리겠지만,
1번의 경우 누가 묻지 않는 이상 능동적으로 파악하기 어려워요.
우리가 수학공부를 하는 방향은
이런 사고에 의한 풀이를 떠올리는 훈련을 하는 거예요.
한 문제의 해설을 수업으로 듣은 후에
빠른 풀이를 알게 되는 것은 의미없어요.
누군가의 테크니컬한 풀이를
듣고 이해하는 것이 아닌
무조건 문제를 보고 스스로 떠올려야 해요!
이런 풀이가 가능하려면
수학적 도구마다 사용되는 환경을
전부 암기하셔야 해요.
그리고
조건끼리의 유기적인 관계를 의심하는 버릇
이 중요해요!
물론 위의 예시는 이해를 위해여 무난한 문제로 가져와서
1번 풀이나 2번 풀이나 소요되는 시간이 거의 비슷하지만
더 높은 난이도의 문제면 차이가 훨씬 크게 나겠죠?
여기서 가장 큰 문제는
.
.
.
.
.
.
과연
어떻게 이렇게 시야각을 넓힐 수 있느냐
인데
이런 풀이를 단순히 많이 접한다고 해서
역량이 길러지는 건 아니에요.
무조건
문제를 바라보는 태도
를 바꿔야 이런 풀이가 보이게 돼요!
또한 태도를 바꾸더라도
유형별로 어떤 풀이를 떠올려야 하는지 모른다면
태도가 무의미해지기에
상세한 유형별 풀이법
을 이미 숙지하고 있어야 해요.
혼자 학습한다면 유형별 풀이법을 완전하게 습득하기 어렵겠지만
그래도 반드시 하셔야 해요.
오늘의 글은 여기까지입니다.
원래 길게 적으려 했지만
괜히 이해만 힘들고
귀찮단 이유로 읽지 않을 것 같아서
최대한 전달하고자 하는 핵심만 적었네요 ㅎㅎ
다음 글은
과연 대치동 컨탠츠가 나에게 의미가 있을까
라는 주제로 적어볼게요!
저도 대치동에서 수업을 하고
오르비 유저분들이 대치동에 많이 있다는 것을 알고 있지만
일부 혹은 많은 학생들이
왜 대치동에서 다녀야하나를 모르고 그냥 남들이 다니니까 다녀야지
라는 생각으로 다니는 경우가 많을 것 같더라구요..ㅎㅎ
미리
좋아요, 팔로우, 댓글
해두시면 무료배포 자료나 칼럼을 일찍 보실 수 있습니다.
이대은T 소개 https://orbi.kr/00066416340
수학강사 이대은
현) 오르비학원
현) 대치명인학원 중계
전) 여주비상에듀기숙학원
*2023, 2024학년도 수강생수 전과목 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://academy.orbi.kr/intro/teacher/466/l
https://academy.orbi.kr/intro/teacher/466/l
https://academy.orbi.kr/intro/teacher/466/l
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
미분VS적분 1
여러분은 고등학교 수준 내에서 미분과 적분 중에 무엇이 더 좋았나요?
-
기상 4
-
이어폰,헤드셋 끼면 답답해서 노량진 고시촌가서 1인실독서실결제후 스피커사용해서 인강들을려고 합니다.
-
셋 다 나군이라서 고민되는데 이건 단국치가 맞음?
-
썸남/썸녀에게 "같이 별 보러 갈래?" 라고 말할 수 있고 낭만이 넘치는...
-
추합이라도 ㄱㄴ? 간절함
-
쪽팔려서 남들한테 성적 못 말하고 다닐듯
-
맞죠? 1컷 맞추기는 확통이 2배 이상 쉽다는데
-
이게 맞나 ㅋㅋㅋㅋㅋㅋ
-
체스 할사람 2
아직 안자는 옾붕이 있나요?
-
이 길의 끝이란 운명처럼 모두 네게 흐르고 있어
-
누구 자녀분이 들어가고싶다고 강력히 주장하기라도 하나?
-
언어 하나 배워두고 복수 전공으로 경영 같은거 같이하면 문과에선 경쟁력있고 ㄱㅊ않음?
-
난 1학년임 0학년이 될수도있다는게 개소름
-
기차지나간당 17
부지런행
-
늦은 나이에 대학을 다시 가야겠다고 결심하고, 컴컴한 밤까지 독서실에서 수능을...
-
경희대 자전 7칸은 말도안되는데 정상화빨리해줘
-
입시는 진짜 2
빨리 뜨는 사람이 승자
-
추천 좀…
-
디즈니랜드 가볼지말지
-
카의 인성면접 점수제 도입(수능 95%, 면접 5%) 성의 모집인원 50명으로 대폭 증가
-
대학교 들어가서 받는 교육이 훨씬 더 중요한거 같은데…
-
정시 64311 2
국어 백분위 33 수학 백분위 74 영어 3 한국지리 백분위 97 세계지리 백분위...
-
잠이 안온다 1
-
오늘 동기랑 7
카공하면서 재수 때 같이 다녔던 학원 이야기했는데 추억 돋고 재밌더라 금방 미화되는 듯
-
본인이 문자 그대로 똑같이 유지만 해도 수능 체제나 평가방식, 모집인원, 반영비 등...
-
사탐런 고민 8
이번에 생지 원점수 44,40인데 생명은 사실 여기서 더 잘볼 자신은 없고 지학은...
-
백분위 97~100 : 나 1등급인데.. ~~ 백분위 89~95 : 나...
-
원서영역 ㅁㅌㅊ 13
걍이대로ㄱ할까아님 걍 고대 질러버릴까 군수생임
-
증원이나 이런거까지 고려해봤을 때 어떤거같음? 나군에서 인설의 아닌 곳 쓸 곳이...
-
찾았다 0
한국사 -> 한검능 국어 -> LEET / PSAT / 7급 공무원 시험 국어 영역...
-
안된다고 해도 할거지만 정작 된다고 하면 의심함
-
오르비를 한다 < 한번 더 할 확률 50퍼 이상
-
안자는사람 손. 9
흠
-
ㅈㄱㄴ
-
시간이 갈수록 목표도 낮3 -> 높3 -> 낮2 이런 식으로 오르기도 했고...
-
일반학과들 작년에 비해 전체적으로 수시 경쟁률 높아졌던데 이유가 뭐임? 올해 수험생...
-
미쳤냐고함 당연함 이친구는 재수도 안함
-
1. 1년 더 한다고 전혀 오를것 같지 않음 2. 현장에서 운이 3~4번은 따름
-
5명인데 제 인간관계 좀 정상이 아닌거임? 왜이러냐 애들이 다들 군대가서 군오수...
-
241128같은 문제를 절대로 현장에서 풀 수 없을 것이 분명함
-
좀 고민이네
-
부모가 성적표 열람 11
부모가 제 동의없이 임의로 성적표 열람할 수 있나요???
-
. 14
-
정시저장소 ㅁㅌㅊ 14
이대로 고 ? 훈수좀 가군이 젤 고민되 (성대 의상은 걍 넣어봄 쟤만 빨간색이길래)
-
수학 사설에서 원래 높1 뜰 시험지에서도 실수만 한 3~4개 쳐박고 2컷~높3...
-
후후
-
두창시치때문에? 진짜 도움되는게하나도없네 ㅋㅋㅋㅋㅋㅋ
-
근데 댓글 반응 왜 다 좋음?? 얘가 빨린다고?? 범죄자가??
좋은 글 감사합니다.
저는 fx가 삼차 기함수 꼴이니깐 어차피 차수가 홀수인 항만 존재하므로 x(x^2+a) 잡으면 끝?
엇 그것도 좋은 생각이네요!!
작년에 대치동 모 학원에서 배운 내용이네요. 처음엔 저걸 어떻게 떠올리지 했는데 노력하니까 보이더라구요!
네 맞습니다~
수학점수는 지식에 영향을 받지만 문제를 바라보는 태도에도 영향을 많이 받습니다!
이게 보이는데 1등급이 아닌경우는 어떻게해야하나요………
흠 이런 관점이 반사적으로 보이느냐 아니면 붙들고 있다가 혹은 설명을 들어보니 이해가 되는 경우인지 먼저 구분허셔야 합니다!
좋은 인사이트 주시는 글 감사합니다 :)