이거 발산임 수렴임?
게시글 주소: https://w.orbi.kr/00067239090
여기서 괄호가 무슨 역할을 함?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
4등급이 스블따라간다고 얻을게있을까 단순도구나열 강의도 아니고 기출해석강좌인데
-
그냥 아빠가 말하는 한마디 한마디가 거슬리고 예민하게 반응하게 되요... 재수허락...
-
머리가 띵~ 2
머리가띵
-
이번에 김범준T의 강의를 듣습니다. 근데 김범준T의 스타팅블록을...
-
ㅇ ㅇ?
-
부산까지는 얼마나 지연되려나..
-
못간다 학교이거
-
수위 높은 장면은 안 나오겠지? 예전에 이런 장면 나온적 있어서 먼가 안 될거...
-
어떻게 예상 커트라인이 417 ㅋㅋㅋㅋㅋㅋㅋ
-
어어
-
촤하하하하핫!!극락이구나
-
전투휴무 줘라 0
이거 출근 어떻게 함ㅠㅠ
-
걍 자휴때림 0
ㅇㅅaㅇ 못가 ㅅㅂ
-
온라인으로 등급,표점 확인하는 건 폰으로 ㄱㄴ?
-
모닝여캐일러투척 18
애니는 안 보고 프사로 쓰는 사람들 보면 괘씸하거든요
-
사장님 0
저도 오늘 출근 하기 싫어요잉,,,,
-
얼버기 2
얼리 버드 기상
-
먹어도 되려나 소리때문에 흠.. 이정도는 오케이인가
-
학교 휴업하네 0
-
이번에 수1,수2 김범준T 듣는데, 스타팅블록2~5등급이 듣기에 좋다고 하시더라구요...
-
한국식 세는 나이로 25살에 교수. 남학생이 군대 갔다 왔다고 치면 4학년때 자신과...
-
승쫑인데 롤 10연패해서 밤새가지고 어떡하지 싶었는데 이런일이?
-
43이 되는 가능세계는 없겠지?? 아무리 높아도 42지??
-
돌아가는 분위기가 매우 흥미롭군요 정부가 의평원 무력화 하는걸 포기했네요? 그런데...
-
8일뒤성적표공개 0
시간빠르뇨
-
형등 급해요 0
신검 30분 지각할거같은데 괜찮음?
-
9시등교인데 10시 등교로 바뀜
-
강제얼버기 4
두시간자고기상
-
6시 기상할까 나눠서 6시반기상/6기기상은 오히려 수면패턴에 방해가 될지도
-
안돼 눈온다 1
살려줘
-
미적분 80 1
2등급 가능성 얼마나 있을까요?
-
필자는 매우졸림
-
화작 확통 생윤 윤사 24222 원점수 87 66 36 39 백분위 89 67 89...
-
축하해줘 14
히히
-
히히 첫 ktx 12
-
난 진촤 독서는 7
배경지식이 매우매우 중요하다고 생각함 배경지식을 풍부히 알고있는 상태로 지문을...
-
얼버기 12
속이ㅈ됐습니다
-
쿨
-
사람아니야
-
설레는 것이와요
-
얼리버드 파이팅 19
냉기가 느껴지네요 오늘 하루도 열공하세요~
-
오 2
-
ㅈㄱㄴ
-
얼버기 5
오늘두 즐거운 하루
-
기상 완료 오늘도 ㅍㅇㅌ
-
그 중 동부는 눈 쌓이면 이렇게 빨리 못 돌아다니겠죠 영화 보면 한 사흘은 집에...
-
모닝 질문 받음 6
고졸 일용직 걸그룹 마스터 야구 중독자 (32년 무관 팀 팬)
인접하는 두 수를 하나의 항으로 묶어 줘요
근데 수렴발산여부는 어떻게 알죠?
오른쪽 급수는
(½-a) + (a-b) + (b-c) + ...
이런 꼴이잖아요? n번째 항이 (n/n+1 - n+1/n+2)라고 할때 n번째 항까지의 합은
(½-a) + (a-b) + ... + (n/n+1 - n+1/n+2) = ½ - n+1/n+2가 되고
저걸 n이 무한히 커지는 극한을 취해 보면 -½이 되2ㅛ
제n항까지의 합을 살펴 보면
왼쪽 급수는 어느 순간 마지막 항이 음수일 수도 있고 양수일 수도 있는데
오른쪽 급수는 언제 보더라도 항상 (양 음)이 더해짐
그럼 오른쪽 급수 수렴값은 어떻게 아나요?
위에 썼음
수열 a_n의 합을 S_n이라고 할 때
급수 S_n이 수렴한다면 일반항 a_n은 0으로 수렴한다
이건 알고 계시죠?
이 명제의 대우 명제를 취해 보면 일반항 a_n이 0으로 수렴하지 않는다면, 즉 발산하거나, 수렴하더라도 0이 아닌 값으로 수렴한다면 급수 S_n은 발산해요
근데 저기 사진에서 왼쪽 급수는 발산하잖아요? 홀수 항은 +1, 짝수 항은 -1로 수렴하니까.. 그니까 왼쪽 급수는 발산이라고 바로 판단할 수 있음
근데 어떤 명제가 참이라고 해서 그 역이 참이라는 보장은 없잖아요?
그래서 일반항 a_n이 0으로 수렴한다고 해서 꼭 S_n이 수렴하는 건 아님 그래서 실제로 값이 어떻게 되나 조사를 해줘야 됨
사진의 오른쪽 급수는 일반항이 0에 수렴하잖아요? 그러면 바로 수렴이라고 판단하는 게 아니라, 수렴일 수도 있고 발산일 수도 있으니까 조사를 해줘야 됨
와 감사합니다...