2016학년도 난만한+포카칩 오프라인 B형 일부 문항 해설
게시글 주소: https://w.orbi.kr/0006731758
2016 난만한, 포카칩 수능 직전 모의평가 29,30 해설.pdf
현장 응시자였습니다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
나때는 악뮤온다
-
난 그냥 공군 안가야지 10
여붕이라 안가도 됨 ㅇㅇ
-
2학년 모고 과탐을 지금까지 계속 화생으로 봤는데 수능때 도저히 화학 볼 자신이...
-
책 읽어야지 6
도 공공도서관에서 대여가 가능하더군요. 너무 비싸서 무료로 대여해 주는 공공도서관...
-
ㅇㅈ 13
아까 퇴근하면서 찍은거 ㅇㅈ 카메라 풀린거 너무좋고
-
총수라는 말은 12
야하다고생각해요
-
책 ㅁㅌㅊ 6
집에한가득w 시선으로부터는 사인도잇어요 알라딘에서냅다업어옴
-
ㅇㅈ 3
여친여치니 ㅇㅈ 플로버분들은 개추를 눌러주세요
-
잠은 좀 이따 잘 듯 싶어요
-
짜증나... 8
갈래
-
난 처음들어보는데 다들 아네..
-
책읽어요 3
재밌을거같아요
-
모썩철썩! 애응님이 그립네요 뭐 재르비해서 이 글 보고 있을 수도 있겠지만
-
아니 뭔가 별로 긁힐만한게 아닌 거 같은데 나도 모르게 묘하게 긁힘
-
남1여1해봣는데 둘다잘맞아서아직도실친으로지냄
-
ㄷㄷㅇㄷ 6
ㅓㅔㅠㅔ
-
진짜 고민됩니다 예비고3이고 가고싶은 대학이 정시로만 갈수있어 정시 준비중입니다....
-
그냥 찍는거? 아님 잘 맞춤?
-
20분 내에 개념 다 풀고 10분 내에 도표랑 도수분포표 풀기 도전!
-
지금 인사하면 받아줌? 24
-
씻고 옴
-
무려19시즌이엇다구 나보다오래햇다고??? 현생살아... 나도가끔오잔아
-
탐구 안보고 국수영 반드시 세과목 모두 222 이내로 들어와야해요 수학 선택...
-
집 도착 9
-
이미지 써드림 go 77
귀찮아지면드랍함
-
암기에는 도가 튼 표본과 강사진을 국경같은 지엽으로 변별하는 것은 이익이 크지 않음...
-
서울대식 400 0
어디정도 됨? +내 점수가 어디서는어메가는 399.5이고 텔그에서는 404.5인데...
-
아침에 글을 한번 썼지만 저는 지난 달에 로컬 회계법인으로 이직했고 올해 대거...
-
질답받아요 5
신체 주소 신상은 알아서 PASS하겠음
-
[사설]그냥 대학 장학금만 늘릴 게 아니라 졸업장 제값 하게 해야 0
교육부가 2025학년도부터 국가장학금 지급 대상을 중산층 자녀에게까지 대폭...
-
근데 정작 교육서비스 받는 게 ㅈㄴ 힘들다는 거 가격이 씹사기라 걔들 입장에서는...
-
지금 텔그 1
서버터진거맞나요
-
fancy
-
질받해요 14
-
누군가가 선넘질은 해달라고 했는데 여르비에게 님 ㅂㅈ 넓어요? 라는 질문을 한 거죠...
-
다 했다 10
내가 해냈다구!
-
이렇다는건 채점기준에 부합하는말만 다 들어가면 좀 논리적비약이 있거나 서술이 좀...
-
간만의 새르비네
-
유튜브에 ‘수능 필적확인문구 노래‘ 검색하면 나옴
-
아 뭐가 문제지 진짜 개화나네
-
인증특) 2
아무도안돌려서 돌리면 돌아오는건 댓글2개와무관심뿐이라 수치사함
-
ㅇㅈ 2
찜질방 팡
-
ㅇㅈ) 눈 ㅇㅈ 15
-
와 ㄹㅈㄷ 사실 2
내일 (사실 오늘) 토요일임 ㅋㅋㅋㅋ캬캬컄 게다가 일정도 약속도 없음 드디어...
-
틀딱 아님 ㅇㅇ
-
벅벅 긁었다 벅벅 풀었다 이만큼 시원한 의성어가 없음 뭐라하지 그 묵직하고 두껍고...
-
질문 안하면 오늘 밤 꿈에 양손에 민초 든 민초한입 나옴
-
아무나한번시작해볼래요? 재밌잖아요
-
얼마나 행복하고 인생이 아름다울까..
이거 문제는 어디서 받을수있나요.
http://orbi.kr/0006731700
마지막 문제 30번에서
일단 역함수존재이니까 양수는 보장이 되었구(일단 양끝에서 발산하므로)
2012학년도 30번처럼 어떤실수만 만족시키면 되니까 토미님 해설처럼 역함수의 미분은 어떤실수의 역함수의 역수로서 해석할수있게되고
일단 역함수가질조건이 2e보다크다이고
f'(x1)≤1/f'(x2)인 어떤실수이니까 좌변이 클조건은 극소일때 최소이고 우변도 극소일때 최대이니까 그래사 계산해도 무방한거죠?
토미님 해설이랑 일맥상통하는 이야기이긴한데
2개인변수를 1개인 변수로 줄이는게 근거가 잘 와닫지 않아서요
만약 도함수값의 최솟값이 1보다 크다면
모든 실수 x1 x3에 대해 도함수값이 둘 다 1보다 크므로
그 두 값의 곱이 1보다 작을 일은 없습니다
즉, 도함수값의 최솟값이 반드시 1보다 작거나 같아야만 합니다
2012 수능 30번에서의 '어떤' 구절을 처리하는 방법과 비슷한 논리를 사용하였다고 보면 되겠습니다
아 그렇네요
그럼 제 접근방식도 옳다고 할수있는거죠?
넵 맞습니다!!
변수를 1개로 봐도 무방한지에 대한 조건들을 아직 학습한적이 없어서 혼동이 오는데 변환가능한 시점들을 어떤 방식으로 판단하면되나요?
글쎄요... 이런 논리는 아직 유형화되지가 않아서 자신 있게 말씀을 못 드리겠습니다
다만, 식에 대한 적절한 해석을 통해 두개의 변수에 공통으로 성립하는 성질을 찾아내는 것이 바람직한 접근법이라는 정도는 말씀드릴 수 있겠네요
여튼 감사합니다
많이 배워가네요!
확인했어요! 감사함니다
문의하신 부분 보충설명 추가한 수정본으로 해설지 다시 올라갔어요~
좋아요 누르고 갑니다 수능 전과목 만점받으세요!!
감사합니다~ 좋은 결과 들고 다시 만나 뵙고 싶어요!!
~~~^^ 토미님 때문에 이과로 전과하고 싶어지네욧~~!! ^^!! ㅎㅎ
갓토미님이당
다른거는 다 풀기는 했는데 19번 하나가 안 풀리네요 19번 힌트나 해설 부탁드립니다 글고 문제 참 좋아요! 킬러문제들 퀄이 ㄷㄷ하네요
적분구간 평행이동이 힌트입니다
2-sinx와 2+cosx, 0과 pi/6이라는 적분구간에 주목하세요
저는 27번 부탁드려요.. 공도 무능력자긴한데.. 29번은 1분컷이었는데 27번이 공간지각능력이 부족해서 그런가 작도가 힘드네요..
선분BC의 중점을 점M이라 했을때 각AMD가 수직나오는것만 밝히면 문제 금방 풀려요 선분DH가 1이니깐 삼각형 DMH에서 각 DMH가 특수각 30도가 되기때문에 평면 ABC와 평면a와이루는 각도 합이 90도가 되거든요 그 후에 넓이/넓이로 이면각
다 맞게 말씀하셨는데, 이 경우 삼수선의 정리로 깔끔하게 풀립니다
ADH와 AHM이 같은 평면이라는 걸 알아차렸다면 교선, 수선이 바로 보여요