[수학] 혹시 시험시간이 부족해?
게시글 주소: https://w.orbi.kr/00067853196
안녕하세요
수학강사 이대은입니다.
오늘의 주제는
같은 문제를 푸는데 걸리는 시간이 다른 이유
에 대하여 글을 적어보겠습니다.
참고로 제가 수업대상이
중상위권이므로
내용이 중상위권에 포커스가 맞춰져 있음을
참고해주세요!
자 문제부터 보시죠!
눈풀로도 이해할 수 있도록
나름 가벼운 문제니
꼭 이해해보세요! :)
22학년도 수능문제입니다.
바로 본론으로 들어갈게요.
제가 수업 때 늘 강조하는 부분인
문제를 보다 빠르게 푸는 방법은
크게 봤을 때 두 가지입니다.
1. 문제에 들어있는 유형파악을 하느냐
2. 계산과정에서 주어진 모든 정보의 관계를 이용하느냐
이 두 가지를 잘할 때
남들보다 빠르게 답을 구할 수 있습니다.
위의 방법을 구체적으로 하나씩 설명해드릴게요.
1. 문제에 들어있는 유형파악을 하느냐
우선 이 문제는 크게 봤을 때
다음과 같은 두 가지 유형으로 이루어진 문제입니다.
1. 다항함수 구하기
2. 두 접선이 일치하는 경우
유형은 파악했으니
각각의 유형에 대한 풀이법을 적용시키면
답이 무조건 나오게 되어 있습니다.
위 유형에 대한 풀이법은 다음과 같아요.
유형소개를 하는 글은 아니니
풀이법만 소개하고
넘어갈게요!
빠르게 푸는 두 번째 방법에 대하여 설명할게요.
2. 계산과정에서 주어진 모든 정보의 관계를 이용하느냐
위의 예제에서
모든 조건을 해석하면 다음과 같은
네 가지의 관계식이 나와요.
함수는 삼차함수이므로
위에 주어진 네 관계식을 이용하면
삼차함수를 구할 수 있습니다.
이때
에 주어진 관계식들을 적용시키면
미지수의 개수와 식의 개수가 일치하므로
연립을 통하여 각각의 미지수를
구할 수 있습니다.
그렇지만
학생들 중 누군가는
단순히 대입하여 연립을 통해 미지수를 구하지 않고
주어진 조건들의 유기적인 관계를 파악하여
계산과정을 압도적으로 줄이는 경우가 있습니다.
에서 보면
두 점
를 지남을 이용하여 함수가
과의 두 교점이 주어짐을 이용하고,
를 이용하여
위의 직선이 접선임을 이용할 수 있습니다.
따라서 위의 관계를 이용하면
여기에 마지막 조건인
를 이용하여
최고차항의 계수만 구하면
답이 나옵니다.
이렇게 수학문제는
어떻게 푸느냐에 따라 풀이에 소요되는 시간이
많이 차이가 납니다.
물론 모든 문제가
이렇게 짧은 풀이가 있는 건 아니지만
지금 이 예제가 22학년도 수능인 만큼
무시할 수 없는 부분이죠!
이런 생각은
대단한 테크닉도, 수학적 지식도 필요한 게 아닙니다.
이런 건 태도의 문제입니다.
문제를 풀 때 태도는
습관처럼 바꾸는 게 상당히 오래걸립니다.
따라서 수학공부를 할 때
단순히 답을 구할 수 있음
에만 만족하지 않고
어떻게 구해야 가장 효율적인지
도 학습해야 합니다.
이번 글은 여기까지입니다.
글을 적기 시작한 게 새벽 4:30인데
벌써 8:55네요..
고생하기도 했고,
다음에도 유익한 글로 돌아올테니
좋아요, 팔로우, 댓글
해주시면 매우 고맙겠습니다!
정규반 수강신청 링크
https://academy.orbi.kr/intro/teacher/466/l
수학 공부법 1회 특강 신청링크
https://academy.orbi.kr/intro/teacher/503/l
공부법 특강 수강후기
1. https://orbi.kr/00067814750
2. https://orbi.kr/00067822140
3. https://orbi.kr/00067823604
수학강사 이대은
현) 오르비학원
현) 대치명인학원 중계
전) 여주비상에듀기숙학원
*2023, 2024학년도 수강생수 전과목 1위
유튜브
https://www.youtube.com/channel/UCx4VfPZoN1DGJFGwXPxa4bQ
수강신청링크
https://academy.orbi.kr/intro/teacher/466/l
https://academy.orbi.kr/intro/teacher/466/l
https://academy.orbi.kr/intro/teacher/466/l
0 XDK (+1,000)
-
1,000
-
까먹고 지금 올림
-
프사 어떰 3
프사 어떰
-
방학때 시간도 좀 남아서 토익780따고 카투사 넣어보려고하는데 작수 86점정도면...
-
미적 투투를 더 자신감있게 할수있을까
-
흐흐
-
이미지 적어줌 27
먼저 써주면 ㅇㅇ
-
전 물리쪽 생각하다가 재능차이 느끼고 이쪽으로 틀었는데 가끔 자다가도 내가 그걸...
-
본인 0
작년 수능날 생일이었음… 수험장 나오고 친구한테 케이크 받은게 가장 행복한 기억임
-
2월 말에 재종 들어가기 전에 뭘 할지 고민인데요. 작년에 제대로 체화 못한...
-
어느 정도 운도 따라야 해서.. 내년에도 잘볼거란 보장이 없으니까 마음이 심란하시겠네
-
올해 문과만점으로 냥의가시는 분이 문과 메디컬 최고 아웃풋아님?
-
시험 방식이 좀 특이해서 빈칸 ㅈㄴ뚫어놓고 풀이과정 완성하는건데 빈칸뚤어놓은부분에...
-
너무 심한 소리만 빼고,,,
-
다른건 이해되는데 공산주의가 21%나 나온건 이해가 안되네 6
나도 사회주의 성향이 있는 건가
-
진학사 3칸이였고 점공률 46퍼입니다 발표날이 24일인데 발뻗잠 해도 될까요 ㅠㅜㅜ...
-
영향을 주는 비율이 더 높다고 생각하는 쪽에 투표 ㄱㄱ
-
어떻게 과 이름이 농 ㅋㅋㅋ
-
ㅋㅋㅋㅋ
-
지금은 뭘 하고 있는지도 모르겠고 재미도 없음
-
정외 심리같은거 배워서 어디다써먹지 아 어렵다
-
근들갑 2
근들근들
-
별로임?? 원리원칙주의
-
24학년도 교육청 학평 킬러 중 제일 GOAT라고 생각하는 문제 12
24학년도 10월 학력평가 22번 구간별로 정의된 함수인데, 함수 의 부호에 따라...
-
보통 설경을 안쓰면 농경제를 쓰려나 정외를 쓰려나 13
아무래도 농 때문에 정외려나..?
-
사탐 언제 시작할거임
-
머리 6
가슴배
-
연애기술 좀 익히려구여
-
과외에 특강에…. 내 2배 이상을 쓰네… 근데 영어 모고 4?등급이면 인강...
-
작수 미적 백분위81이구요. 작년에 한걸 적어보자면, 현우진T 뉴런 다 듣긴했는데...
-
ㅇㅗ빠 7
차 있어?
-
자취방에서 뭐하는 거람..
-
비둘기게이가 ㄸ치다가 갑자기 알닮은 애가 ㄸ치는 거 알고 이불 뺐어가서 후다닥...
-
영어랑 안 맞나 1
가끔 Birthday 이런 단어를 보면, 뭔가 이상해
-
소액이라도 덕코 받으면 기분 좋잖아요? 모두가 막쓰면 순환하면서 기분도 좋으니 막씁시다!
-
사실 아까 옯스타 글 올릴 때 우정이 영어로 먼지 기억 안 나서 인터넷에 쳐봣어
-
팔취할거면 하셈여...가시는 길 고이 보내드리오리다
-
서로 아무 말도 안하다가 20분? 걷고 집 옴 왜 삐져있는거야 본인이 잘못해서 싸운건데 참어렵다
-
후배 잘못둬도 한참잘못뒀다
-
도전을 안 외쳣어 깜빡하고
-
원하시면 쪽지주세여 。◕‿◕。
-
왜 팔로우하시는거에요.. 잡담태그도 안다는 불량이용잔데
-
"해줘"
-
저도 옯스타 홍보할께요 10
Love, Peace and Friendship
-
내일 하겟습니다
-
그렇다네요
-
결국 그게 최고더라고요
첫번째 댓글의 주인공이 되어보세요.