6모 개인적인 총평 & 감상 - 기출조각
게시글 주소: https://w.orbi.kr/00068312466
안녕하세요. 이번 시간에는 엊그제 있었던 6모에 대한 개인적인 총평과 문제별 감상을 이야기하려고 합니다.
일단 6월 모의고사를 치시느라 고생 많으셨습니다.
평가원 모의고사는 매우 중요하다고 하는 만큼 이번 시험을 통해서 본인 실력을 확인해보고 본인의 문제점을 분석해서 다음 시험에서 개선하는 것을 목표로 잘 활용하시면 좋겠습니다.
또한, 평가원 모의고사를 통해서 올해 평가원의 문제 출제 방향을 확인할 수 있기 때문에 두고두고 복습하시면서 평가원 코드에 잘 맞춰주시면 되겠습니다.
[수학 총평]
6모 수학의 경우 제가 느끼기엔 꽤 어려웠습니다. 12번, 15번, 21번, 22번에서 계산량도 많았고, 14번, 15번 등 독특한 문제도 있어 재밌는 시험이었습니다. 다만 평가원 답게 무지성 난이도 높이기가 아닌 적절히 다양한 방법을 조합해서 난도를 높인 것 같아 공부할 가치가 있는 것 같습니다. 3월의 경우 너무 익숙하게 출제되었고, 5월은 너무 새롭게 출제되어서 혼란이 많았을 것 같은데, 6월은 3월과 5월의 중간을 잘 자리 잡은 것 같은 시험이었습니다.6모는 선택과목이 전 범위가 출제 되지 않았기 때문에 우리가 공부한 것의 100%라고 하기 애매하기도 합니다. 그러니 어려웠다고 점수에 연연하지 말고 주어진 범위에서 나의 부족한 부분을 잘 찾아보시길 바랍니다.
[문제별 감상]
문제별 감상의 경우 확통, 미적만 풀어보았기 때문에 기하는 부득이하게 내용이 없습니다. 이점 양해 부탁드립니다.
[공통 12번]
문제 자체는 쉬우나 계산이 많아 진이 조금 빠지는 문제였습니다. 하지만 이정도의 계산량은 감당할 수 있어야 합니다.
[공통 15번]
(나) 조건을 어떻게 해석할지가 관건이었던 문제입니다. 적분의 성질을 잘 파악해서 접근했어야 했고 이후엔 주어진 조건들로 g(k+1)의 범위를 구하면 되는 문제였습니다.
[공통 20번]
저의 경우 최대, 최소가 되는 경우를 추적해서 답을 찾았지만 문제에서 a,b가 5이하의 자연수로 주어지므로 a, b값을 고정하여 일일이 찾아도 되는 문제였습니다. 오히려 이 문제는 일일이 찾는 것이 더 정확한 풀이입니다.
[공통 21번]
자주 나오는 유형으로 그래프 개형을 파악하고 이에 맞는 수식을 세우는 문제입니다. 이런 문제에서는 특히 4차함수일 때, 변수와 계산이 복잡해지는 것을 주의하여 최대한 간결한 식을 세우려고 노력해야 합니다.
[공통 22번]
보통 15번이 수열의 귀납적 정의가 나왔었는데 이번엔 22번으로 출제되었습니다. 이 문제는 귀납적 정의 중에서도 좀 어려운 편에 속했던 것 같은데 마찬가지로 나열을 통해서 값을 추적해 나가면 됩니다. 귀납적 정의 문제를 풀 때는 규칙을 찾을지, 나열할지 판단하고 나열을 택했으면 a1부터 출발할지, a15처럼 뒤에서 역추적할지 또 판단을 해야 합니다. 어떻게 판단하는지에 따라 계산량이 달라지기 때문에 주의하셔야 합니다.
[확통 28번]
조건부 확률 문제로 동전 배치가 조건을 만족시키는 케이스를 잘 구분한 후 이에 맞춰 식을 잘 세워주시면 됩니다. 이런 문제는 케이스를 꼼꼼하게 구분하는 것이 핵심이기 때문에 놓치는 케이스가 없도록 주의하면 되겠습니다.
[미적 27번]
저도 처음에 굉장히 헤맸던 문제로, AC:AB를 닮음을 이용해 높이의 비로 바꿔서 계산하는 것이 핵심입니다. AC,AB로 문제를 풀려고 하면 값이 굉장히 더러워지고 또 좌표평면에 빗변으로 존재하기 때문에 다른 값들을 활용해야겠다고 생각할 수 있어야 합니다. 3점 문제치고 굉장히 어려웠던 문제라고 할 수 있지만 풀이에 접근한 이후 계산이 쉬워 3점으로 분류된 것 같습니다.
[미적 28번]
그래프의 특이점을 파악한 후 구해야 하는 값을 계산해야 하는 문제였는데 g'의 특성상 생각할 것이 조금 있었습니다. g(x)를 f(x)와의 역함수 관계로 생각하고 문제를 풀고, g(x)의 조건에 맞게 g'(f(a+2))와 g'(f(a+b))를 구분해서 구했어야 하는 문제입니다.
[미적 29번]
그래프의 평행이동을 이용한 문제로 조건에 맞는 모양을 만들고 식을 잘 대입하면 됩니다.
[미적 30번]
tan함수의 덧셈정리, 극한의 성질을 잘 활용했어야 하는 문제로, 특히 힘들만 했던 것은 an+1-an이 파이로 수렴하는 것을 찾는 것입니다. 삼각함수에서 수열의 극한이 나오면 주기성을 이용할 확률이 높으니 이를 잘 유의해 주시면 되겠습니다.
모의고사 총평 및 감상은 기출조각에도 올라가 있으니 참고해 주세요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
현행 수능 100% 전형처럼 최후의 계층이동 사다리 전형 하나는 꼭 필요하다고...
-
카메라 안갖고와서 사진이 좀 아쉽네요
-
확통 컷 0
85( 62+23)인데 2 뜨겠죠?
-
15 넘어가는게 없고 다 11 12 13 이러는데 갓반고인가 학종에서 내신 볼때...
-
실제로 쪽지 보내서 동일인인 것도 확신한 적 있는데 뭔 허언충 새끼들이 이렇게 많은지 ㅋㅋ
-
23수능 : 현역, 정말 아무것도 안하고 수학 시2발점 들음 15365 (언미물화)...
-
내 희망컷 4
화작1컷91 미적공통틀96표점148 물리1컷42 생명2컷40
-
그게 나야 바 둠바 두비두밥~ ^^
-
왜 난 아직 수술실도 못드갔을까
-
중1때까지는 출석번호까지 외웠는데 중2때부터는 이름만 간신히 외움,,,,,, 담배...
-
나는 기계다 4
원신을 하는 기계
-
인생쓰닥의 희망컷 12
언매 91 선택1틀_ 기적적으로 1컷 미적 88 선택1틀_ 백분위 97은 나왔으면...
-
오버워치할사함 0
구해
-
러시아도 아니고 0
눈이 10cm넘게 쌓이네
-
근데 한 번 더 할 것 같아서 시도해 볼 엄두도 안 남
-
지1 사탐 하면 가산점 아예 없는 거? 아님 반만 들어가는 거?
-
영어는 제외
-
생1 <- 2023년에 ㅈ반고 내신 1등급 출신, 유전 거의 모름, 비유전 다...
-
급여도 왔으니 0
한번 종착역 까지 가볼까..
-
화나게 하는 천재인가..
-
ㅈㄱㄴ
-
틀딱이라그런가
-
일부러 상처주고 회복시켜주면 오래감 ,,,,ㅇ ㅇ... .. 그래서 자기들이 나랑...
-
사놓고 안입어서.. 코트 입으면 좀 부담인가요 걍 후드입고갈까
-
공통수학 2 유리함수 무리함수 개념이 없는데 개념 듣고 그 단원만 쎈 풀면 이틀만에...
-
반수를하게됏는데ㅠ 원래 화작이었거든요 이번 수능은 화작1개 틀렷고 화작에서 시간을...
-
눈 내리는거보니까 눈이 아프다
-
언미화지 백분위 85 93 1 76 94인데 가능할까요
-
버스 막차가 늦게까지있네
-
.. 1
-
독서만 듣고싶은데 엄청 어렵대서.. 들어보고싶은데 ㅠ
-
06년생 여자고 이번수능 언매 원점수 100이고 내신, 모의고사 쭉 1등급이었어요...
-
제발…
-
작성자 본인 이야기가 아님을 밝힙니다. 댓글로 ㄱㅁ 치지 마시고 좋아요를...
-
전 40개임뇨
-
초등학교 때 나 좋아했던 애가 있었음 어케 알았냐면 걔가 나 좋아한다고 걔 친한...
-
수능 D-3에 출범하는 여의정 협의체…25학년도 의대증원분 바뀔까 출처 :...
-
아무리 그래도 2
1시간 전에 알바 호출은..
-
다 두들겨 패고 싶음
-
20번 같이 k값구하는게아니라 식조작하는거 나도 처음에 이게 k구하라는거는 아니고...
-
고전시가 공부법 0
현재 고전시가 인강 듣고있는데 1.인강 선생님 해석 들으면서 모르는 어휘 정리...
-
외대의 겨울 1
눈
-
이미 사과탐 유불리 나오니까 예견된 참사 어쩌고 하는 글이 인기글 가는데 수능전에...
-
동물 싸우는거 ㄹㅇ ㅋㅋ
-
기숙학원 추천 (죽는사람 살린다 생각하고 도와주십쇼...) 21
안녕하세요 78등급 나오던 중학교도 못하던 노베가 잇올스파ss 에서 독학하니...
-
내년에 전북의나 전남의중 하나갈거같은데 예1에 경력없으면 과외비얼마받을라나 수학...
-
대체 생윤이 어케냈길래 1컷 41이나옴? 그거 다외우면 1-2개로 방어할수...
-
씻어야겠다 6
영화시간 늦겠다 늦어
-
정도면 많이 올린건가유 화학이 트롤해서 평백이 94밖에 안됨…
-
우우 중성붕이야 2
사랑해
첫번째 댓글의 주인공이 되어보세요.