다항함수의 미분계수의 역수의 합 (feat. 240728)
게시글 주소: https://w.orbi.kr/00069099108
안녕하세요. 오르비에 글을 처음 써 봅니다.
어제 OnlineMathContest에서 열린 OMCB020에 참가했습니다. G번 문제 해설을 봤는데 처음 보는 공식이 나와서 공유하고자 이 글을 씁니다.
G번 문제는 다음과 같습니다.
구글 번역기로 번역해보면 다음과 같습니다.
실수 계수 3차 다항식 f(x)에 대하여 방정식 f(x)=0은 서로 다른 3개의 실수 해 p, q, r을 가지며 x=p, q에서 f(x)의 미분계수는 각각 9, -7이었습니다. 이때 x=r에서 f(x)의 미분계수를 구하십시오. 그러나 원하는 값은 서로소인 양의 정수입니다. a, b를 사용하여 a/b로 표현할 수 있으므로 a+b를 해답하십시오.
수능 문제 형태로 다시 써보면 다음과 같습니다.
삼차함수 f(x)에 대하여 방정식 f(x)=0은 서로 다른 3개의 실근 p, q, r을 가지며 f'(p)=9, f'(q)=-7이다. f'(r)=a/b일 때, a+b의 값을 구하시오. (단, a와 b는 서로소인 자연수이다.)
해설을 보면 별해가 있는데 다음과 같습니다.
0이 아닌 실수 c를 사용하여 로 나타낼 수 있다. 이때 x=p,q,r의 미분계수는
이다. 일반적으로 서로 다른 복소수 a,b,c에 대한 항등식
이 성립한다(통분함으로써 용이하게 확인할 수 있다). 따라서
그리고, 여기에서 이다. 일반적으로 중근이 없는 2차 이상의 다항식 근에서 미분계수의 역수의 합은 0이다.
검색해 봤더니 나무위키에 역수의 합에 관한 내용이 있었습니다. 공식은 다음과 같습니다.
n≥2이고 xi<xi+1(i=1,2,3,...,n-1)인 n차 다항함수에 대하여 다음이 성립한다.
증명은 여기를 눌러서 보세요.
예제를 직접 만들어 봤습니다.
예제1) 5차함수 f(x)와 서로 다른 실수 a,b,c,d,e에 대하여 f(a)=f(b)=f(c)=f(d)=f(e)=0이고, f'(a)=f'(e)=-6, f'(b)=f'(d)=24이다. f'(c)의 값을 구하시오.
풀이
예제2) 삼차함수 f(x)와 일차함수 g(x)=2x-1이 서로 다른 세 점 (a,f(a)), (b,f(b), (c,f(c))에서 만나고, f'(a)=5, f'(b)=0일 때, f'(c)의 값을 구하시오.
풀이
함수 h(x)를 h(x)=f(x)-g(x)라 합시다. h'(x)=f'(x)-g'(x)=f'(x)-2입니다. 방정식 h(x)=0은 서로 다른 세 근 a,b,c를 가지므로
입니다. 계산하면
입니다.
기출문제에 적용해서 풀어봅시다.
2024학년도 고3 7월 미적분 28번
(가) 조건에 의하여 g(0)=0=f(0), (나) 조건에 의하여 g(k)=k=f(k), g'(k)=1/3, f'(k)=3입니다. f(x)의 역함수가 존재하므로 f(x)는 증가함수입니다. f(x)의 그래프를 다음과 같이 그릴 수 있습니다.
p(x)=f(x)-x라 하면, p'(x)=f'(x)-1이고, p'(k)=f'(k)-1=2입니다. f'(x)≥0이므로 p'(x)≥-1입니다. 방정식 p(x)=0은 서로 다른 세 실근 0,b,k를 가지므로
입니다. p'(0)에 대하여 풀어주면
입니다. p'(b)=-1일 때, p'(0)은 최댓값 2를 갖습니다. 따라서 f'(b)=0일 때, f'(0)은 최댓값 3을 갖습니다.
f'(0)의 값이 최대일 때, f'(0)=f'(α)=3이므로 f(x)는 점 (α/2, f(α/2))에 대하여 점대칭입니다. b=α/2이므로 f'(α/2)=0입니다. 그래프를 다시 그려보면 다음과 같습니다.
f'(x)=3x(x-α)+3이고, 이므로 α=2입니다.
α=2를 대입하면 f'(x)=3(x-1)2이고, f(x)=(x-1)3+1입니다. f(3)=9, g(9)=3이므로
따라서
입니다.
2024/09/08 예제1에서 f(d)->f'(d)로 오타 수정했습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
양악하고싶다 0
-
선착순1명 19
가장 빠른 사람이라는 뜻
-
12시 이후부터만 ㅇㅇ.. 자야지이제
-
97점 99 76점 85 93점 1 45점 96 42점 96 언미생지 나는 이과지만 수학이 밉다..
-
에구구
-
18수능 국,수(가형),영,한국사,물2,화2,중국어 응시 각 원점수...
-
ㅇㅈ 10
마스크업으면무서웅
-
언제까지 이런 현타오는 일상을 살아야하지
-
또 불면증의 밤 4
엊그제도 밤을 새고 어젯밤엔 4시간 잤는데 또 잠이 안와???? 낮잠도 안잤는데 나...
-
최대한 안정적인 과목 원하고 둘 중에 하나만 꼭 고르면 머가 좋을까여
-
안녕하세요.. 10
요즘 바빠요
-
안자는 사람 손 9
가능?
-
수시6장 설대만지름 서울대의대 수시교과 합격 서울대 경제학과 학생부교과전형 합격...
-
나랑 정철할래? 1
-
그것은 바로 경제 왜냐면 전교에서 한명만 하거든
-
이분 닮은걸류 종결..
-
오르비
-
진짜 잔다. 4
10시엔 일어나야 해..
-
이거들어바 19
-
시험장에서 어떤 개지랄을 했길래 이렇게 망쳤을까..
-
눈팅하는 인해전술 인민군 수많명과 잠 못자고 깨어있는 호감고닉들의 눈치싸움
-
에휴씨부럴ㅋㅋ
-
통과 내신 1
며칠전에 시험본건데 나름 기출픽이나 오투 풀어서 통과 열심히 했는데 처음 보는...
-
출근핑
-
화학2 Kb가 1보다 클 수 있나..(23학년도 17번) 0
23학년도 17번. (나) 용액 화학2 Kb가 1보다 클 수 있나..
-
단, #~#은 1343313에게 당장 쪽지를 보내야 한다는것을 의미한다
-
왜 보고 싶어함?
-
논술 발표 1
논술 발표일 보통 몇일정도에 하나요? 성대 한양 중앙 작년에 언제쯤 했는지 궁금해요
-
와이파이 왤케 빨리 차..?
-
진짜 얼마나 감사한 일인지.. 걱정없이 새르비 쌉가능
-
오래된 생각이다...
-
음울하면서도 몽환적이었던 거 같다
-
살빼야되는데
-
지거국 낮은 과라도 상관없습니다..충남대,경북대,부산대,전남대 중 가능한 대학 있을까요..?
-
근데 반응이 당황스럽지만 감사합니다.. 예상치 못한 좋은 반응들이라
-
진짜 미리 성적표 다 뽑아놓나요?
-
자야겠다 5
아침보다 더 우울하네 하..
-
좆같음을 잊을수있게해야한다하나.. 유일하게 잘때랑 그때만 화가 안남 좋아서 마시는게...
-
잘생긴 사람이 너무 많은데 이게 맞냐 난 자살하러감 ㅂㅂ
-
올 수능부터 발표 당일날은 성적통지표 온라인으로 발급 가능 성적 증명서는 9일부터
-
제시문 (나)가 모든 존재들의 존엄성을 내세워서 이익과 고통은 동등하게 고려되어야...
-
ㅇㅈ은 몇 시에? 10
3시에 해야한다 이말이야 화질은 ㅈㅅ
-
입음? 아니면 학교 근처에서만 입음?
-
새 글 업데이트! 가 떴는데 새로고침해도 새 글이 안보인다면 그건 누군가가 모밴으로...
-
활동 1일차인데 1
덕코 2500개 쌓임 옯창이 되.
-
. 2
-
서글프뇨..
-
한국사 6등급 6
아니 2~3 뜨다가 수능때 6 떴는데 저도 왜이런지 모르겠거든요..? 어차피...
-
오이시쿠나래 3
오.....
저걸 처음 생각해낸 사람은 도대체 뭘까
재밌는 성질 감사합니다