[칼럼] 문제 풀이의 방향성에 대한 조언
게시글 주소: https://w.orbi.kr/00069206891
안녕하세요. 김지헌T입니다.
문제를 풀 때 어떤 방향성으로 접근할지 결정하는 것은 해결의 첫걸음이자 가장 중요한 단계라고 할 수 있습니다.
이번 칼럼에서는 230622을 예시로 들어 이 문제의 3가지 해설 방법을 소개하고,
이를 토대로 수학 문제를 풀 때 방향성에 대해 조언을 드리고자 합니다.
1. 유리화 접근 :
일반적으로 유리화는 무한대-무한대의 형태에서 주로 했었다는 사실을 많은 학생들이 알고 있을테죠.
위의 극한식에서는 -를 기준으로 분자에서 왼쪽항과 오른쪽항을 분리하여 따로 표현하면 무한대-무한대가 됩니다.
하지만 이때 조심할점은 g(t)가 0이라면 각각의 항들이 0/0 형태가 되면서 0/0 - 0/0이 되는 반면,
g(t)가 0이 아닐때 무한대-무한대 형태가 된다는 점이겠죠!
따라서 g(t)가 0일 때, 아닐 때에 대해서 문제의 기준점이 생김을 토대로 직관적인 풀이가 가능합니다.
이 문제는 극한값 자체가 아닌 극한값의 존재성만 물어봤으니 조건만 읽자마자 g(x)=0의 실근을 알려줬구나
라고 생각하면서 접근하면 좋겠지요.
2. 미분계수 해석 : 이 접근법의 근거는 극한식이 미분계수의 정의와 매우 비슷한 형태라는 점입니다.
x → -3일 때의 극한을 구하는 것은 x = -3 근처에서의 함수의 변화율을 분석하는 것과 유사할 수 있습니다.
3. 변수 분리 접근: 이 방법의 근거는 극한식에 x와 t 두 변수가 동시에 등장한다는 점입니다.
g(x)와 g(t)가 별도로 나타나며, 이들의 관계를 분석할 필요가 있습니다.
또한, t값에 따라 극한의 존재 여부가 달라진다는 조건이 주어져 있어, x와 t를 분리하여 생각할 필요성이 있죠.
이 접근법은 복잡한 식에서 변수 간의 관계를 명확히 하는 데 유용합니다.
각 접근 방식은 극한식을 어떻게 바라보는지에 따라 나뉘게 됩니다.
1. 유리화 접근은 극한식의 형태(무한대-무한대 또는 0/0의 형태)에,
2. 미분계수 해석은 순간변화율으로 해석가능함에,
3. 변수 분리 접근은 두 변수 간의 관계에 주목합니다.
이 세 가지 접근법은 모두 주어진 극한식에서 학생들이 어떤 정보에 가중치를 뒀냐에 따라
충분히 합리적인 방법이 될 수 있다고 생각합니다.
물론 이 문제의 경우 1. 유리화 접근이 주어진 극한식을 대하는 가장 좋은 해석이라 생각합니다.
하지만, 유사한 형태의 다른 문제에서 2. 미분계수 해석 또는 3. 변수 분리 접근이 쓰일 수 있겠지요.
사실 230622도 유리화로 접근하지 못하고 미분계수로 해석을 했더라도 충분히 풀 수 있는 문제였습니다.
여러분, 풀이가 합리적으로 시작만 했다면 생각보다 방향성은 중요하지 않습니다.
공부를 할 때는 여러가지 풀이를 배우며 안목을 늘려두는 것이 중요하겠지만
시험을 칠 때는 '이게 가장 괜찮은 길인가?' 의심하며 되돌이표를 찍지 않아도 괜찮습니다.
모로가도 서울만 가면 되니까요.
여러분에게 항상 도움이 되고 싶습니다.
감사합니다.
김지헌 수학 핏모의고사 (지헌모) 2025 판매중입니다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
VR챗에서남자꼬실려고연습해본적있음 아직도걔는내가남자인거모를걸
-
2학기휴학안된다 알고있는데 등록금 걍 내고 반수하셨나요? 전 1학기부터...
-
사탐/과탐선택 진지하게 고민중입니다.. 조언부탁드립니다 15
안녕하세요 저는 내년 수능 준비하고 있는 n수생입니다. 이전...
-
한양대 진학사 모의지원으로 6칸~4칸 지원자들 계산기 돌려서 변표발표 후 성적 살짝...
-
나를 괴롭게하네 허허
-
제 성적에 변표 적용하면 어떤 영향을 받나요..? 발표 전후로 10점정도 오르긴...
-
군수 결산 0
언기영화1물2 23수능 (입대 전) 96 91 4 94 76 24수능 (군수...
-
오지훈 이훈식 6
대성패스를 끊은 예비 고3입니다 노베이고 개념을 시작하려고 하는데 이훈식 개념...
-
제 의견 입니다. (1) (연대/고대 등에 해당) 정량 평가의 불가능 학교마다...
-
아직 진학사 같은 거 다 변동중이라서 최종을 모르겠어서요. 저 정도면 보통 어느...
-
한양대 진짜 6
사과해요 나한테!!!!
-
욕심을 그냥 좀 버려볼까 욕심이 과하니 정신이 산만해지네...
-
그래서 돈없다고 거절함 근데 슬프게도 핑계가 아닌 팩트임... 진짜돈이없어ㅅㅂ ㅠㅠ
-
그게나에요
-
그냥 뼛속까지 문과생.. 일단 ebsi로 싹다 밀엇는데 메가스터디나 대성 진짜...
-
그깟아무가치없는데이터를돈주고사는 아무의미없는행동하지마세요...
-
국어 3컷에 나형 100점 받고 사탐 1 1 받고 건대 떨어져봐야 정신을 차리지..
-
커뮤에 너무 절여져 버렸다 그래도 현실 말투는 이 정도까진 아닌데
-
ㅏㅏㅏㅏㅏㅏㅏㅏ 4
ㅇㅇㅇㅇㅇㅇㅇㅇ
-
손해볼 일은 진짜 거의 없음 자기 자신을 위해서라도 들이면 좋은 습관
-
이번에 헌법재판관 후보로 지명된 정계선 후보자는 특이한 커리어이긴 하네요. 1
서울대 의대 중퇴하고 학력고사 다시 쳐서 서울대 법대 입학...그리고 사법시험 수석...
-
성대야 사람하나살려다오
-
교육 짜는 사람들이 문괴출신이다 보니 수학 못하는 애들은 구제해줘야된다 뭐 이딴...
-
왜이러지
-
내신은 총합하면 2.6정도고 세특은 그럭저럭 채운거같습니다 만약 유지한상태로 수시...
-
약대는 공부량 어떤편인가요? 일반과랑 비슷한 수준인가요?
-
학교 거리는 둘다 집에서 비슷하다했을때 어디를 추천하시나요?? 댓글 한번씩만...
-
여르비 질문 받습니다 10
네
-
본과 때 방학이 진짜 방학인가요?? 아니면 가짜 방학이고 하루 종일 공부나 뭐...
-
문제를 너무 어렵게 낸다는거지 그 짧은 시간 안에 추론,퍼즐이 섞여있는 문제를...
-
제껀 찾기 쉽습니다 정직해요
-
잠 언제 잘까 8
-
인설의나 연치 목표이구요. 과탐 2개는 솔직히 할 자신이 없는데 그러면 목표를...
-
화학 47/ 90 겨울방학때 1,2단원 열심히 여름방학까지 한달에 한번 꼴로 간간히...
-
생윤이 사탐중에 제일 어려움 이것은 반박할수없음
-
그런 거 정리돼있는 곳 없나요
-
한명 차단했는데 계속 댓글 쓰는데 안보임
-
옯스타 3
. 일상 관련
-
흠. 5
흠.
-
기도하는 마음으로~
-
제발
-
근데 자교 아닌 다른 대학병원으로 빠지는 경우도 많다는데 왜 자교 티오 신경써서...
-
국어×(200÷139)×1.25+수학×(200÷140)×2+영어+(탐구2영역합)×1....
-
학교라인을 높이고 낮은학과에 가는게 좋을까요 아니면 학교라인을 낮추고 좀 높은...
-
물갈이가 될 시기긴 하죠 저도 3수 시작하면 안올듯
-
궁금
-
의치대 사탐 1
사탐 2개하면 의치대 불가능한가요?? 최대 목표는 인설의(연의포함)이나 연치에요....
-
진학사 칸수전망 2
님들 어케보심? 올해 의대이월이랑 스카이 이월 역대급으로 많다하고 의반수 빠지고...
-
추합전화를 실수로 거절하거나 통화 중에 실수로 끊어버리면 그대로 떨어지는 건가요,...
선생님 노베들을 위한 칼럼도 부탁드려요
글 내용에 너무 동감합니다.
100분이 생각보다 긴 시간이라 뭐 효율적인 풀이를 딱히 찾지 않더라도 논리성만 정확하다면 100분 내에 30문제를 풀어내는데에 전혀 문제가 없는데 말이지요.. 오히려 시간이 부족하거나 문제를 풀어내지 못하는 경우는 어떤 문제를 논리성은 정확하지만 너무 비효율적으로 풀어서가 아닌 자기 논리성에 대한 확신이 없어서 오래 걸리는 경우 / 문제의 논리의 실마리를 하나라도 잡지 못하는 경우더라고요
생각보다 최선의 풀이방향성에 대한 고민은 중요한 것 같지 않습니다 많이 풀다보면 효율적으로 나아갈 수 있고요
와 근데 짝수 홀수로 접근하는건 대박 좋은 풀이 같네요. 좋은 칼럼 감사합니다