합성함수 인식부터 치환적분까지
게시글 주소: https://w.orbi.kr/00069306012
문제 같이 읽어보겠습니다.
뭔가 그림 그리고 싶다는 생각이 듭니다.
이 정도로 그리면 되겠습니다. 노란색 동그라미 친 건 미분계수입니다.
문제를 마저 읽어볼게요
아, f(x)가 아니라 f(2x)래요. 그것도 그려줍시다.
x=1에서 미분계수가 2인거 바로 보이시나요?
이쯤에서 잠깐 딴 얘기로 샜다가 돌아오겠습니다.
(딴 얘기)___________________________________________________________________________________
이건 cos함수에 5x를 합성한 함수입니다.
5x는 x보다 다섯배 빠르게 진행되기 때문에,
cos5x 함수는 cosx 함수에 비해 모든 대응되는 구간에서 다섯배 빠르게 변합니다.
미분계수가 다섯배인 셈이죠.
또 다섯배 빠른 진행속도 덕분에, 함수는 다섯배 축소됩니다.
(딴 얘기 끝)________________________________________________________________________________
이런 이유로, 앞선 문제에서
이렇게 그릴 수 있던 겁니다.
이제 문제 마지막 부분 읽어볼게요.
음.. 이건
f(2x)의 그림만 보고 a는 1이고 b는 1/2이라고 읽으면 됩니다.
긴 설명 대신 그림 2개면 충분할 겁니다.
함수 그림은 냅두고
x, y 축만 샥 바꿔주면 됩니다.
우리가 잘 알고 있는
이 사실을 수식적으로 이해해도 좋지만,
저는 때에 따라 조금 더 기하적인 느낌으로 이해합니다.
이렇게 말입니다.
앞선 예시도 이런거였죠.
하지만 이 얘기는 f(x)와 f(3x)처럼 단순히 일차함수를 합성했을 때만 쓸 수 있는 얘기가 아닙니다.
다음 문제로 넘어가봅시다.
지수함수 f(x)에 대해 다음 값을 구해야 하는 상황입니다.
가독성을 위해 엄밀하게 적지는 않았지만 다 이해하셨을거라 생각합니다.
일단 절댓값 f(x)부터 그려봅니다.
-1에서 미불이고, 이때 오른쪽 미분계수는 ln2입니다.
이제 어떤 빨간 점이 이 곡선경로를 쭉 따라간다고 해봅시다.
이 빨간점은 y=x세제곱 함수의 속도로 곡선경로 위를 움직이는 중입니다.
y=-1일 때, x세제곱 함수의 미분계수는 3입니다.
따라서
여기 -1 부근에서 빨간점은 경로를 3의 속도로 지나가는 중입니다.
아까 문제에서 h'(a+) 구하라고 했었죠.
3의 속도로 기울기 ln2인 구간을 지나는 중이니까 답은 3ln2입니다.
근데 삼차함수에다가 대고 막... 속도 개념을 부여해도 되는걸까요?
또 잠깐 딴 얘기로 샜다가 올게요.
(딴 얘기22)___________________________________________________________________________________
아까 cos 5x는 진행속도가 일정한 경우였습니다.
그런데 진행속도가 일정하지 않을수도 있습니다.
(예전에 제가 썼던 칼럼 일부를 인용해왔습니다)
앞서 언급했던
이 사실이 이러한 이유로
이렇게 인식될 수 있는 겁니다.
시간 있으신 분들은 아래 기출 문제 풀어보세요.
귀찮으면 넘어가시구요
답은 19+20= 39입니다.
알려드린 걸 통해 풀면 인식하기가 훨씬 쉬울겁니다.
(딴 얘기 끝)________________________________________________________________________________
아직 할 얘기가 많이 남아있습니다.
합성함수 인식은 결국 치환적분의 얘기로 이어집니다.
다만 이번편에 다 쓰면 너무 길 거 같아서, 다음 편으로 넘길게요.
좋아요랑 팔로우 누르고 기다려주시면 곧 돌아오겠습니다 ㅎㅎ
0 XDK (+10)
-
10
-
뭐냐
-
신기해 들어보고싶은데 후기좀여
-
화학에서 생명런 21
어떻게 생각하시나요? 생물 1도 해본 적 없는데 지학이랑 생명이랑...
-
나머지 다 맞고 수학 1번 x=6까지 구하고 최솟값만 틀렸는데 많이 힘들까요..ㅠㅠ
-
한양대 상경논술 0
원래 확통 하나씩은 내주던데 올해는 전혀없네 ㅋㅋㅋㅋ 아 그리고 문제느낌 약간 그냥...
-
문제 1. [제시문 1] A기업은 좀 후진 나라인 B국이랑 계약 체결했는데 얘네가...
-
이렇게 된 이상 외대로 간다
-
에반데
-
[문제1] 이항분포의 정규분포화 -> 상위 몇% 학생 수 구하기 [문제2]...
-
냥대 수논 2번 4
풀이 과정 알려주실 분?
-
난 진짜 순순하게 박력있고 멋진게 좋았던건데..
-
연고대는 다른 학교랑 다르게 문과 기준 편입영어 말고 논술로 뽑는다던데 혹시 이것도...
-
쉬웠나여 저는 허수라 2-2풀다가 시간 없어서 냈음..
-
얘 상황파악까지 다해서 3분? 정도밖에 안걸렸음.
-
기하런 하고 과탐공부시간챙기는게 맞겠죠?
-
나였으먼 1
그대 사랑하는 사람 나였으면
-
지금 진학사 5칸이라 좀 쫄림
-
수리 하나 못풀었는데 붙을 가능성 없나..
-
이게 맞지 50-60회는 너무 많긴 해
-
중학교때친군데 5년만에 만나여 이번에 저희학교 의대 붙을거같다고해서 만날예정인데...
-
너무 설렐거 같아
-
3합7,8은 맞출거같은데 탐구 가채점을 못써서.. 솔직히 좀 쫄려가지고 유시험...
-
그냥 이런 저런 자료들 찾아보면서 든 제 개인적인 생각이라 수학 과목같은 다른...
-
님드라.. 문제 다 질 풀었는데 논술적는곳에 가운데 줄이 점선으로 되있던데 그건...
-
오늘 외대앞역에서 내릴거임 저녁먹을거 ㅊㅊ좀
-
냥대 상경 3
낭대 상경 논술 혹시 답하나 틀려도 붙은 사례 있나여…? 답 도출과정에서 부호...
-
메리트가 거의 없지않나요 사탐2개 하는게 나을것같고 과탐필수 대학가고 싶으면 과탐2개 해야되지않나
-
부산대 논술 후기 45
1,2번 문제가 생각보다 쉬웠던거같음 1번은 보고 순간 당황했는데 노가다뜀 1-1...
-
냥대싱경 3
1. 64, 최솟값은 틀린듯 ㅅㅂ 2. 77/27 3. 13,2 파경 썼고 복학 각
-
현장에서 틀린이유: 막줄
-
오늘 한양대 논술 쳤는데 성대 앞에도 있던거같은 사람들 한양대 앞에도 있던데 뭐하는...
-
1번 최대: 130(x=8) 최소:-160(x=6) 2번 77/27 3번 최대:13...
-
경희대 외대 낮과 가능할까요? 건대 어문 면접 1차 붙었는데 가는게 맞나요?ㅜㅜㅜㅜ
-
어제부터 오늘 아침까지 확통 쎈발점 끝내느라 뒤지는 줄 알았는데공통에서만 나온 거...
-
한지지2 세지지2 지2를 지1로 바꿔도 비슷
-
정시할때 고1 수학이 큰 영향 안주겠죠? 고2 6모는 3떠요
-
차타고 가면서 13
잠자기 vs 애니보기
-
쉽지않네 조건 하나를 더 얹어주면 개허접문제될거같고 또 안주자니 결정이 안되네 어렵군
-
수학 하나 너무 절었다 ㅠ
-
이매진/인강민철 중에 하나 생각중인데 이 두개가 아니더라도 개인적으로 만족한 주간지...
-
허메 안 춥나
-
영어 4등급 지원조차 못 하게 막을 가능성 없겠지?
-
최대 최소만 각각 구하는 문젠데 다 구해놓고 최대에서 최소 뺀 값을 적었으면 몇 점 감점인가요?
-
은 뭘까요? 전에 오르비에서 생윤화2 봤는데 그분 이길 실사례는 없을 것 같긴함..
-
좀 많이 유명해지는 것 같네요? 수능 전에도 입시 커뮤에서는 유명했지만 다른 곳까지...
-
딥피드 점령자들 5
-
냥논 상경 수리 8
1번 답 기억 안 남 최대가 64였나 최소는 f(6)에서 나왔던 것 같은데 2번...
-
원래 얘기 안하려고 했는데 그냥 하겠습니다 Ebs 수특 수완에서 무조건 하나 나옵니다 감사합니다
-
더주지 ㅠㅠ 답을 못 썼도다 ㅠㅠ
-
뻥임뇨
오 cos2x 같은 일차항의 계수만 달라져서 합성된 상황만 x축 방향 축소로? 알고 있었는데
이차함수같은 게 합성되어 있어도 되는 느낌이네요
특정한 한 지점에서는 이차함수도 지수함수도 직선으로 근사할 수 있기 때문이라고 생각해도 되겠습니다
무민은좋아요
라끄리식수학적사고ㄷㄷ
https://orbi.kr/00064989284
그동안 쓴 칼럼 리스트입니다. 필요하신 분들 참고하세요
진짜 좋은 칼럼
우와...
식으로 파악하던걸 가시화해주네요
간단하보이지만 누군가 이런걸 정리해주지 않으면 써먹기 쫄리던데 감사합니다!
신기방귀
f(x)를 g'(x)의 속도로 지나가고 있다고 해야 맞을듯
g(x)의 속도 (=g’(x) )로 지나간다는 의미였습니다.
저도 둘 중에 뭘 쓸까 고민했어요
말씀해주신 것처럼
g’(x) 의 속도라 해야 와닿는 거 같기도 하네요
좋은 지적 감사합니다 ㅎㅎ
그러면 "g(x)와 같은 속도“는 어떤가요?
합성함수기울기=각위치 겉속 기울기의 곱
엔축공부하면서 떠올렸던 건데
속도개념으로 볼수도있군요!
goat...
와 제가 이해한방식이랑 거의 유사합니다
정돈된 버전?
남들한테 퍼지는게 아까운 수준의 글이네요
딴얘기, 딴얘기 끝이라고 표현해놓은게 왜이리 귀엽게 보이지ㅋㅋ 잘봤습니다
저 다 봤어요 이제 내려주세요
개추
좋은칼럼 잘보고갑니당