스포) 샤인미설맞이 손풀이+간단한 해설
게시글 주소: https://w.orbi.kr/00069655521
주말엔 쉬는편이라 이제야 봤네요
간단한 리뷰를 하자면 킬러(15번)가 진짜 아름다운 문제였다고 생각
준킬러는 되게 쉽지 않았나 싶네요
1컷 88?(미적분)
f(k) f(-k) 전부 4^x면 곱이 2/9가 나올 수 없겠죠
매일 하던대로 넣고 벅벅 계산으로 마무리
g, h모두 f 최고차를 따라가니 최고차 대충 잡아놓고 무한대극한으로 최고차 계수 구하고,
x->1조건에서 g-h = 2f(x)인걸로 f(x) 식 작성 마무리
구하는것도 2f(4)라고 바꿔 보면 되겠죠
홀짝나눠서 한쪽은 그냥 상수*6, 한쪽은 제곱 시그마 합 공식을 벅벅
접선끼리 평행이동(x로 3만큼) 관계에 있어서 x절편 평균값이 -1이다로 놓고 직선 구해서 다시 함수로 돌아가서 함수 확정해주면 끝
14번 도형치곤 사설에 절여진건지 너무 쉬웠다는 느낌?
각 점이 전부 원점에서 거리가 같아서 원주각-중심각 관계로 Q든 P든 x,y좌표값 비가 코사인 조건에 의해 특정되는거만 발견하면 아주 쉽게 풀리죠
너무 어렵고 아름다운 문제
(나)조건에서 f(f(1)),f(f(2)),f(f(m))이 전부 같고 f(자연수) 값들 중 최소임을 먼저 느껴야되고,
최고차 음수면 계속 값이 작아지니 (나)조건을 만족시킬 수가 없고,
양수일 때는 x = f(1), f(2), f(m)을 지나고 y좌표가 대충 무언가라고 두고 다시 생각해보면,
f(1)이 1보다 크면 f(1)이 f(f(1))보다 반드시 작아지니 모순, f(1)=1
f(1)이 1이니 대충 무언가로 둔 y값도 1
또한 이러면 f’(1)>0인 개형이 되니 f(m)>f(2),
f(m)~f(2) 간격이 1보다 크면 그 사이 어떤 값에서 f(자연수)의 최솟값이 생기므로 안됨, f(m)=f(2)+1, 조건에 따라 f’(1) = 15/2
위에 작성한 식에 2대입해서 f(2) = ~~, f’(1)값으로 연립하며 마무리
(나눠주는 게 가장 깔끔한듯)
홀수인 거에 짜릿하게 반응이 오면 쉽게 풀리죠 (홀수 되는 경우는 구간설정상 t=-3k/2밖에 없다)
열린구간이라 구간경계값이 최대/최소일 수 없음을 느끼고,,
{f(x)}^2이라는 함수의 극대/극소가 최대/최소가 될 수 있다로 두면 어렵진 않게 풀리죠
개수니까 부등호조건에서 n(A3) = 3이겠죠
A짝수, A홀수의 원소개수 특징을 파악하면 A5, A10이 겹치는 원소가 두 개 있어야 한다, 0은 무조건 겹치니 다르게 겹칠 수 있는 두 케이스에서 각각 값 구하고 더해주면 끝
15번이 진짜진짜 어려웠어서 22번은 좀 쉬운 느낌이네요
라이프니츠를 쓸 경우 d?/dt, 저같이 함수로 두면 ?‘(t)를 안 구해도 되는 문제였네요
a2 a5가 같아야되고 케이스 3개나오겠죠
되는 경우 하나밖에 없고 계산벅벅 마무리
0~4까지 함수가 =<x면 된다를 느끼면 나머지는 어렵지 않죠
|x|+t 위 길이니까 그냥 y값 차로 봐도 무방하고 이걸로 식 세워서 적분으로 벅벅
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
글씨만 봐도 수학 고수인게 느껴지는 마법좋아요 0 답글 달기 신고
-
좋아요 0 답글 달기 신고
-
하지만 기다릴것
-
올수능 결과보고 사탐런 더 몰려올텐데 걔네 과탐하듯 탐구에 힘조절 잘못하면 진짜...
-
출처:...
-
이제글그만쓸게요 10
오늘너무과했어요
-
어차피 수능이랑은 큰 관련이 없긴한데 그냥 겨울방학 성적표같은 느낌이라 최선을...
-
어떤 선택을 하게 될 때 어떻게 해야 잘 될까보다는 어떻게 해야 나중에 더 후회하지...
-
수능 미적 73점이고 원래 다니던 학원에서는 미적분 개념원리만 2회독 했음 이번에...
-
ㅎㅇㅎㅇ 3
-
널 사랑하는 거지~
-
이제 과탐 원과목도 투과목처럼 고여버려서 사탐런을 하라고 하던데 컴공을 지망한다면...
-
수원을 뉴런 2회독 한 고3 올라가는 고2 입니다 수투는 이창무 심.특 듣고 있고...
-
내년에 겨울방학동안 두각 현강을 들을 것 같은데 시간표가 고민이네요. 단과 듣고...
-
과연 무엇이 될까
-
정말 와닿음뇨 사회라는게 필요에의해만들어진건지 원래존재햤던건진잘모르겠지만 사회안에서...
-
맨유의 정상화 보여주시나요
-
던지고싶군
-
지삼다로 출격. 3
오늘은 솔랭이군..
-
언미화생 0
100 100 1 50 41이면 메쟈의 어디까지 되나
-
슬프다. 19
1년 해서 남은 게 오르비 금테뿐이라는 게.
-
마음같아선 정시 컨설팅 받고싶지만 그럴 돈이 없어서 독학을 해야할 것 같은데...
-
내년 수능 0
반수 계획 중인데, 문과로 24수능 22243인가 받았었고(3은 지1), 좀...
-
정말이지 무의미하다 아무리 꿈이나 희망을 갖고 있어도, 행복한 인생을 보 낼 수...
-
13.15km 5
걷기
-
말랑말랑 아기같음..
-
사랑해 난너희들밖에없어
-
정시로는 절대 못 갈 라인 논술을 써버린 나...
-
질문받아요 46
슬슬 학교/학과 선택 질문이 좀 보이네요 저는 서울대 공대/자연대에서 썩고 있는...
-
그만 커라 나만의 작은 미3누로 돌아와줘
-
ㅠㅠ 나는 소인이여서 결과른 기다림이 이토록 힘든것인가
-
오늘은 집에서 맛있는 간장계란볶음밥을 먹어요
-
김범준 대기 0
공통 1000번대 미적 700번댄데 이거 빠지나요... 작년 기준으로는 시대 신청...
-
제작진 너무하네
-
연애+동아리+과생활 까지 6개는 어떰
-
탈릅 21
덕코가질사람
-
지금은 개같이 싫어짐
-
칭찬자주해주자
-
ㅁㅊ 배신감
-
그 누구도 그 원칙에서 벗어날 수 없고 따라서 언젠가는 너 또한 피비린내를 풍기게 될 것이다.
-
외대 논술 T4 1
다들 1번 문제 블랙베리 분류 어떻게 하셨나요 안정을 추구하다가 망함 안정으로 분류...
-
앙 6
앙
-
안졸기난이도극상
-
3등급실력으로샤인미풀던시절
-
어차피 결과는 정해져있는건데 발표 전까지 얘가맞네 쟤가맞네 하느니 돈이라도 걸면 재미라도 있을텐데
-
원희가 예쁘다고 보심? 11
어케 생각함??
-
나도 멘헤라인데 4
흐흐
-
이런 풀이 어때요? 처음 풀 때 생각한 풀이인데 답지에서는 내분점공식 쓰길래요
-
가채점 성적 0
원점수 언 미 영 생 지 78 96 3 30 33 인데.. 텔그 결재 의미 있을까요..?
-
이기상 강의 다시 들어야