미분법 복기 (증명 포함!)
게시글 주소: https://w.orbi.kr/00069859679
1. 합성함수의 미분법
y=f(u), u=g(x)가 미분가능할 때,
y=f(u), u=g(x)이면 --> dy/dx = dy/du × du/dx
[증명]
(x의 증분 Δx에 대하여 u=g(x)의 증분 Δu, y=f(g(x))의 증분 Δy) Δu = g(x+ Δx)-g(x), 즉 g(x+ Δx) =u + Δu이므로
Δy = f(g(x+ Δx)) - f(g(x)) = f(u+ Δu) -f(u)
따라서 Δy/Δx = Δy/Δu × Δu/Δx
= {f(u+ Δu)-f(u) / Δu} × {g(x+ Δx)-g(x) / Δx}
Δx->0으로 갈때 lim Δy/Δx = f'(u)g'(x)
(* Δx->0 일때 Δu->0 )
y=f(g(x)) --> y' = f'(g(x)) × g'(x)
_______________________________________________________
2. 음함수와 역함수의 미분법
2-1. 음함수의 미분법
음함수 F(x , y)=0에서 y를 x의 함수로 생각하고, 각 항을 x에 관해 미분 (* y=~ 꼴로 정리하지 않고도 가능..!)
2-2. 역함수의 미분법
(함수f의 역함수g, f와 g가 미분가능)
y=f(x)는 곧, x=g(y) --> 양변을 x에 관해 미분하면,
1 = dg(y)/dy × dy/dx
= dx/dy × dy/dx
따라서, dx/dy = 1 / dy/dx (*dy/dx가 0이 되면 안됨!)
g'(y) = 1/ f'(x)
& b=f(a) 일 때 g'(b)=1/f'(a)
_______________________________________________________
3. 매개변수로 나타낸 함수의 미분법
x=f(t), y=g(t)가 t에 관하여 미분가능,
dy/dx = dy/dt × dt/dx = dy/dt × (1 / dx/dt)
= g'(t)× {1/f'(t)}
(*f'(t)가 0이되면 안됨!)
_______________________________________________________
+
공부가 잘 안되서 복습을 하자...! 했는데
뭔가 옯에 글을 써보면서 복습해보니까 은근 괜찮네요..
수능 3일 전이기도 하고, 많이 부족하지만 도움이 될 수 있는 글을 좀 써보고 싶어서...
3-40분정도 투자해서 미분법 복기(증명포함) 해봣습니당~!
혹시라도 개념 흔들리거나 헷갈리시는
미적 선택자분들 참고하셔용~~
다들 수능 잘봅시다!! 파이팅!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
실질경쟁률 몇 될거 같음뇨?
-
탈원전 망상 못 벗어난 野…내년 예산 500억 삭감 검토 10
인공지능(AI) 기술 등의 발달로 원자력발전소의 중요성이 더욱 커지고 있지만 원전...
-
서성한 2
서성한 상경이나 공대 가능한가요??
-
컴터 필요함?
-
선지 판단이 너무 어려움 매력적 오답을 못거르니까 21222324에서 시간이 걸리고...
-
2024 대표적인 인공지능 분야 이슈들은 뭐가 있나요? 1
면접 준비 할 때 참고 하고싶습니다… 혹시 알고계신게 있다면 댓글 남겨주세요ㅠㅠ
-
남자티 ㅈㄴ 남뇨 사진에 속지말도록
-
삐끼삐끼 챌륀지 0
삐끼 삐끼 삐끼 삐끼
-
베나타의 논증 2018 리트 언어이해
-
의자 어디껀지 아는사람? 그거 사고싶은데
-
사실 5점인데 0 더해봄뇨 5번으로 밀었는데 5점나옴뇨
-
제가 오르비에서는 못하는 편이지만 비슷한 성적대 사이에선 공부를 가장 안했다고 자부할 수 있음
-
아침에 뭐 넣다가 실수로 멀티탭 전선이 문에 껴서 문이 안 닫힌거같은데
-
날개야 다시 돋아라. 20
날자. 날자. 날자. 한 번만 더 날자꾸나.한 번만 더 날아 보자꾸나. 04년생의...
-
소신발언 할게요 6
뻥임뇨
-
탐구 선택 0
sky공대가 목포면 과탐 2개 하는게 맞겠죠 ?
-
진학사 단골 2
"비밀쿠폰"
-
수학이나 물2는 허접이라.. 지2에 관해 궁금한 거 있으신 분들은 뭐든지 물어보세요!
-
공대인데 가벼운 자격증 연습이라도 할까요 ? 대표적으로 뭐하면 좋을지...
-
기벡 쎈 미적분 II 쎈 ㅋㅋㅋㅋ
-
적백박을때까지응시할꺼임뇨
-
토익 무물 11
물어보세용
-
ㅋㅋ 6
-
트젠 왜 내가 갈 땐 없냐?
-
일 것... 시립대 상권은 진짜 ㄹㅇ 상상이상 레전드임
-
옛날 책 갖고계신분 있나요??(94년도 수학의정석, 영어책ㅇㅈ) 5
집에이게왜있지ㅡㅡ
-
ㅈㄴ 심심한데 만들어주면 하루종일 상주 ㅆㄱㄴ
-
아무튼고뱃붙이고옴뇨
-
마크 7
수능 끝나고 작은 나라 하나 건설했는데 그 뒤로 스토리 생각 안나서 안 하고 있음
-
갤럭시는 s24아님 25이고 아이폰은 16프로 뭐가나음 삼성페이 엄카 등록...
-
뭔 떡밥임 0
나만못봄
-
근데 님들 국소마취인데 뭐 안먹고 가도 되겠죠? 수술 한 한시간 걸린다는데 (근데...
-
글캠 에리카 뱃지입니다만
-
설치 소신권인데 4
의대라인은 한없이 떨어지는거 슈바 쌩표점 goat ㅋㅋ
-
피방알바 인식ㄱ 1
무서운형누나들 많나요? 지원 할말 고민중 ㅠ
-
수2 실력정석 4-16번인데요 풀긴 했는데 답지랑 다르게 접근하기도 했고, 서술량이...
-
ㅈㄱㄴ
-
언매미적사탐2 1
최대대학 어디인가요
-
시반도대단하던데 12
적백은예상못함뇨
-
잇올 가기 싫다 0
너가 없는 잇올을 더욱
-
강건너 불구경
-
저번에 놀러갔는데 밥집밖에 안 보였음뇨
-
내일 그가 온다 9
대 대 대
-
??
-
책 역사상 GOAT ㅋㅋ
-
대학입학 전에 하는 것들이..케바케겠지만 일반적으로 보통 언제 하나요? 해외여행...
-
그만싸우셈뇨 7
뻥임뇨
-
ㅇㅇ 솔직히 안암 너무 구린거같음 누가 빌런이 필요하시대서 내가 빌런이 되려고여ㅎㅎ
-
10일 기다리느라 숨막혀 죽는줄 알았다
복습완료! ㅋㅋㅋㅋ