수학질문 ㅔㅜㅠ
게시글 주소: https://w.orbi.kr/00070803352
왜 f''(x)가 0보다 크거나 같은건가요 그냥 큰거라고 하면 왜안되나요ㅠㅠ? 어떨때 등호가 들어가는건지모르겠어료
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
근데 눈뜨니까 5시 20분인 새끼
-
우리는 여러 강사 분들에게 논리 독해 기법을 배웠습니다. 저는 그 중에서, 가장...
-
연애는 기본적으로 모든게 여자가 우선이기 때문 고백도 남자가 해야되고 다가가는것도...
-
왜냐면 65점맞고 그 이후로 안 풀었으니까 ㅋㅋ
-
스타팅 블록에 필요한 기출은 다 있는거 같은데 카이스아나토미 필요한가? 그냥 n제나...
-
땅우<—-증명좀
-
학습관련 질문 받아용 31
다른 질문도 환영 。◕‿◕。
-
어려웠던 것 같은데 강철중 1회 28번만큼
-
감동적이였음 계산도 개 ㅈ같아서 마무리까지 ㄹㅈㄷ 강기원 조교하던 오르비언도 풀다가...
-
정석민 션티 3
재수하면서 처음 듣는데 비독원 문개정 문기정 /nf 키스로직 현재까지 매우 만족...
-
수학실모배틀 25
강대x 강대k 서바 전국서바 킬캠 이해원 설맞이 강철중 더프 등등... 본인의...
-
재수생의 안목 : 성공적인 수능과 논술 준비의 본질 0
안녕하세요. 소테리아의 길 입니다. 오늘은 "재수생의 안목"에 대해 이야기해 보려...
-
너무 노베는 안뽑는다길래 6등급을 거르는정도로 생각했는데 이건 뭐 감동도 없고..ㅋㅋ
-
일단 서울 사는 직장인인 순간 최소 7분위 이상은 찍고 시작하는듯 월급 얼마...
-
근데 기하도 있어야되는 이제... 시중컨 꼭 아니여도 되는데 시중컨이면 더 좋다 느낌임요
-
50만원은 넘 비싸
-
궁금
-
난 널 사랑해 0
나도 널 사랑해 증명해 봐. 세상에 소리쳐 (귀에 속삭이며) 난 널 사랑해 왜...
-
토익은 그냥 재미가 없어도 너무 없어서 못하겠음
-
도파민을 위해 하는 행동 1인거같음
-
일단 남한텐 없고 나한테만 있는거 같음 ㅋㅋㅋ
-
한달 100만원 16
용돈70 + 계약학과 장학금30 해서 100만원인데 기숙사 살고 술 안마시고...
-
호머 사용법. 1
일단 가지고 싶은 점수를 설정 호머를 하고 오르비에 올림 인증은 없죠 그 다음에 그...
-
뒤질것 같음 그냥 마실까
-
일단 전 그런 게 있을 리가 없다고 생각해요
-
알빠노? 내 기분 좋고 남한테 피해 안주는데 공리주의적으로 올바른거 아님?
-
보통 어느정도임? 본인은 수학 끽하면 76,80으로 박고 물리는 배모 20점대,...
-
대학 강의실 거의 다 이럼? 소규모 필수 교양수업도 다 이런곳에서 함? 서성한부터는...
-
후반부에 자꾸 3등급 나와서 설사틱하다고 깠는데 6•9평 2였는데 수능 날 진짜 3등급 나오더라.
-
ㄹㅇ….두근두근
-
살빼고싶다 4
그저께 78.5였는데 밥 한공기먹으니까 80됐음 1.5kg는 금방찐다..
-
수학호머강의 4
1.일단 계산실수들 +3 +4 2.거의 다 푼거 +4 3.시간 있었으면 풀 수...
-
그냥 죽지만 않고 영창 안가고 무사전역하고 싶음 군대가 어떤 공간인지 생각해보면...
-
호머 그만두는법 7
친구랑 옆자리에서 같은 실모 풀고 바꿔서 채점하기
-
. 2
-
저.격해요... 2
-
토익 D-14 되는 날이구나 ㅅㅂ 12일부터 공부해야지 해놓고 12일이 뭔 날인지 까먹고 있었네
-
학생들이 나보다 어려보임:가짜현타 조교들이 나보다 어려보임:진짜현타
-
호머실모단 4
-
텝스 청해 대비 6
자막 없이 영화 보는 중
-
현실이 너무 암울해서 커뮤에서라도 잘나가고 싶었어요
-
테:무대란 이러는 새끼는 ㅈㄴ 역겨움
-
한달용돈 6
얼마받음?
-
f(x)=g(x)/x-a 를 h(x)/x-a + M 으로 놓고 엄청 쉽게 풀던데...
-
메인글 보니까 갑자기 생각나서 말함 전여친은 서울대생이었음. 본인은 아는 서울대생이...
-
사탐 뭐가낫나요 1
사문 세지 한지 중 두개 하고싶은데 세지한지가 재밌어보이는데 고였다는 말이 많고...
-
임티로만 대화하기 15
도전자를 구합니다 ㄱㄱ혓
y=x^3도 실수 전체 집합에서 증가한다는 거랑 비슷한 맥락이라고 보시면 돼요
그것도 생각해봤는데 잘 모르겠어요ㅠㅠ 2x^2은 이해가 가는데 저런 식은 어떻게 알수있는건가툐?
증가함수도 f'>=0인거랑 같습니당
근데 그러면 그냥 위로볼록 아래로볼록 할때는 왜 =이 안붙는건가요?
아래로 볼록하다면 f">=0이다.
f">0이면 아래로 볼록하다.
제 생각엔 명제 공부를 하셔야될듯
이계도함수가 y=x^2인걸로 놓고 그려보세요
근데 그냥 위로볼록한거 할때는 f"(x)<0 이렇게 했는데 저 문제는 실수 전체여서 =도 붙는건가요?
f(x)=x^4을 생각해보면, x=0에서 이계도함수값이 0이지만, 전체 그래프는 아래로 볼록합니다.
0이 추가된 이유를 한마디로 표현하자면, 특정지점에서 이계도함수값이 0이어도, 주변에서 0보다 크다면 아래로 볼록하다는 성질이 유지되기 때문입니다.
이계도함수의 값이 쭉 0이 되는 구간이 발생하지 않는다면(이때는 직선이겠죠?),
어차피 0이상이라고 했을 때 0이 되는 지점들은 이산적으로 분포될거고, 그 이외의 지점에서는 항상 양수일거라 저렇게 표현하는 것이 옳은 것이죠
그러면 그냥 위로볼록 아래로 볼록 구할때는 이계도함수 값이 >0,<0 이렇게만 붙고 =이 왜 안붙는건가요? 이제 =이 붙는건 이해가 가는데 그냥 위로볼록 아래로볼록 할때는 =이 붙으면 안되는질.ㄹ 모르겜ㅅ더요
이계도함수가 모든 정의약에 대해 쭉 0이면 직선이 되는 반례가 생겨서 그런거같아요..!
=이 안붙는다고 하신 것이 정확히 어느 부분에서 나온 것인지 모르겠으나, 제 생각엔 아마
'f"(x)>0이면 그래프가 아래로 볼록이다'
라는 명제를 보고 그리 얘기하신 듯 합니다.
'p이면 q이다' 참이라고 해도, 'q이면 p이다'는 거짓일 수 있듯이, 위의 명제는 참이어도
'그래프가 아래로 볼록하면 이계도함수가 양수이다'
는 거짓입니다. 정확히는 0이상이어야하는거죠.
아마 학생께서
'f"(x)>0이면 그래프가 아래로 볼록이다'
라는 참인 명제를 학습하시고,
f"(x)>0과 그래프가 아래로 볼록한 것은 동치라고 오해하신 듯 합니다.
이거맞나요?
넵 맞습니다
지금 위의 저 사진처럼 되는거까지는 이해가 가는데
문제 중에 873이랑 874 질문 차이를 잘 모르겠어요 둘다 위로볼록 아래로 볼록 물어보는거같은데 873번은 볼록한 구간이 이미 정해진 상태고 874는 전체 실수여서 그런겅가요? 어디에서 차이를 보고 무슨 조건을 써서 풀어야할지 감이안잡혀요ㅠㅜㅡㅠ
간단하게
아래로볼록이면 f''>0 -> X
아래로볼록이면 f''>=0. -> O
f''>0이면 아래로볼록 -> O
f''>=0이면 아래로볼록 -> X
다른 이야기긴 하지만
f''>=10이면 아래로 볼록이다.
이것도 맞는 명제입니다
헷갈리시나요?
네 모르게ㅛ어요ㅠㅠ