회원에 의해 삭제된 글입니다.
게시글 주소: https://w.orbi.kr/00070803811
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
퓨ㅠㅠ
-
"그녀석"이 업어서 그래.. 하아..
-
Ai ㅇㅈ 2
-
연대 펑크 0
연대 이과 빵 어디어디 난것같나요...???
-
재밋음
-
빽다방에서옛날커피를사서마실때 천원을내고설탕가득호떡을깨물때 계획표의모든계획에체크표가쳐질때(희귀함)
-
울고 있었다면 다시 만날 수 없는 세상이 멋지지 않았는가
-
제가 좋아하는 스타일들 모음
-
유빈 4
유빈아카이브 같은 자료방 더 없냐 추천 좀 해줘라
-
그런게 가능할까
-
요즘 소확행 1
내 몸이 버틸 수 있는 최대 따뜻한 온도로 샤워할 때 창문 열면 영하의 한기가 후욱...
-
아줌마 왜 좋아하냐면서 씨부랄 것들
-
언매 커리 누구 들을까. 언매는 김동욱.
-
우와 와 와 5
K~~~C~~~
-
역시 대 이 유 1
최강 동안
-
이거 봐 5
사진 마다 다르게 나옴 1.5점씩이나 차이나는데
-
듣기전에는 커뮤에서 어렵다길래 무슨 고능아 전용 빡쎈 강의인줄 알았는데 초반...
-
ㅇㅈ 7
대 가 천
-
난 ㅅㅂ 왜 못들어봤지 분명 좋은 공교육 강사인데 드릉드릉이라는 말 쓰는게 조금...
-
쌍수해볼까 13
쌍수 뭔가 해보고싶네
-
제2외로 한문 할만한가
-
원래 잘했던 사람들 말고 등급 낮았다가 높아진 분들중 답주시면 좋을거같아요 저처럼...
-
. 4
. . . . 조회수 확인용 도대체 왜클릭…?
-
나도 여르비 할래 헤응
-
왜 일반하고 점수가 다르요?
-
킹치만 고닉들이 아니면 댓글을 안달아주는걸…
-
잇올이나 러셀같은데 15
담배펴도 되나용???
-
추억의 장소 0
군수 2학교
-
진짜 하면 계정 폭파되서
-
커뮤의 장점 4
현생과는 다르게 참고 살 필요가 업다
-
ㅇㅈ 재밌겠다 4
ㄷ
-
어삼쉬사 난이도 0
수분감 풀기전에 슥ㄱ슥 풀만함?
-
ㅇㅈ 10
9점은 처음 떠보는데 ㅋㅋㅋㅋㅋ 맨날 8점 받다가..
-
근데진짜궁금햇단말야.
다음곡선 ~~가 위로 볼록한 구간에 속하는 실수 x가 아닌것은? 이랑
곡선~~~이 실수 전체의 구간에서 아래로 볼록할때
이런 두문제가 있는데 첫번ㅁ재ㅜ 문제풀때는 f"(x)과 0 관계를 볼때 =이 안붙고 두번째 문제 풀때는 =이 붙는 이유를 모르겠어요ㅠㅠ 두 문제 질문에서 뭐가 다른게 있나요?
질문이 잘 이해가 안됩니다
앗 다른분께도 질문했던거 복붙해서 쓰느라 그러네요ㅠㅠ
지금 위의 저 사진처럼 되는거까지는 이해가 가는데
문제 중에 873이랑 874 질문 차이를 잘 모르겠어요 둘다 위로볼록 아래로 볼록 물어보는거같은데 873번은 볼록한 구간이 이미 정해진 상태고 874는 전체 실수여서 그런겅가요? 어디에서 차이를 보고 무슨 조건을 써서 풀어야할지 감이안잡혀요ㅠㅜㅡㅠ
제 능력이 안되서 말로 설명하기가 힘드네요
개념책을 같이 놓고 본인이 깊게 생각해보세요, 그리고 안된다면 다른분께 여쭤보세요
?? 그 두개 동치 아니었음? 헐
f'' > 0
아래로 볼록
f'' ≥ 0
모두 동치 아니에요
맨위 맨아래는 당연히 다르게 생겼으니까 다른데 아볼이랑은 각각 뭔차이죠?
찾아보니 직선도 볼록이라고 볼 수 있네요.. 아래 두개는 동치일거 같습니다
예를 들어, f(x)가 상수함수면 f''는 0이지만 볼록성을 묻기는 애매하죠
이런문제는 수능에는 안나올거 같아요 그냥 두개 동치라고 생각하셔도 될듯
아 뭔지 알겠어요 감삼다 ㅎㅇㅌ
저도 님 덕분에 좀 자세히 찾아보게 되었는데 볼록(convex)이 두종류가 있음
볼록 / 강한 볼록
여기서 직선은 볼록함수기는 하지만 강한 볼록은 아님. 마치 상수함수가 단조증가이지만 강한 증가함수는 아니듯이
그리고 수능에서 다루는 볼록성은 강볼록을 의미함. 따라서 상수함수 / 일차함수는 "수능 범위"에선 위로 볼록하지도, 아래로 볼록하지도 않음
영어로 된 용어들을 제가 한글로 바꾼거라 틀린 용어가 있을수도 있어요