미적 질문 (간단하게 정리했음)
게시글 주소: https://w.orbi.kr/00071251089
g(x)가 아무런 조건도 없는 상황인데
2x+npi 꼴이라 할 수 있나요?
g(0) = npi 가 아닌 상황이면
꼭 g'(0) =2 일 필요는 없는 거 아닌가요??
미적 너무 오랜만이라 헷갈리네요 ㅠㅠ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
근황 귱금하네
-
내신재탕은 진짜 선넘는다 삼수까지만 내신쓸수잇게해라.
-
결코 다시 전쟁
-
크롬으로 안들어가져서 사파리켬
-
한의사가 뭘로 그렇게 많이 벌었길래 그리 높았음? 한약?
-
이 문제를 통해 2가지의 배울만한 마인드가 있습니다.1) 수능 문제수능 문제는...
-
수끼야아악
-
(가)조건 과조건 아님? oT랑 oA 수직이고 oT 각도pi/6인거도 구해지고...
-
내 방 이쁘지? 17
야광별 스티커붙여서 밤에 이쁨
-
ㅇㅇ....
-
진짜 외로워
-
자지마 3
마!!!!
-
수시로 가면 2
꽃동네 대학 가야해..
-
이새끼들 사회성은 엔수생이랑 비교가안됨
-
400에러뜨던데 나만그랬나
-
볼라벤 하이선 마이삭 힌남노 얘네들도 기억나네
-
예비 19번이면 내려놓고 편히 재수 시작하는게 맞겠죠?
-
정시그만때려요 5
아아 아프다고!!!! 그만패 ㅠㅠ
-
어그로 3
ㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣㅣ 끌렸죠?
-
놀리던 사람들 잘못하면 그 수업 듣게 생겼네 무슨 느낌일까 잘만하면 최지욱쌤처럼...
-
야추 ㅇㅈ 9
-
뽑아놓으면 도망가 사화성떨어져 아웃풋 밀려 그저 수시에서 패했을뿐인 범부
-
메타전환 메타 2
벌써 메타전환이군
-
야ㄷ같이 노골적인 자세의 초딩 알몸 ai 그림 보면 무슨 생각 들 것 같음? 애니...
-
자다 깸 0
다시 재워죠
-
남자 기준!
-
인생이 비참해져요
-
개인적으로 무슨 영역, 무슨 과목이든 간에 강사의 전공자 여부를 중요하게 봄 아무리...
-
피방 갈 돈이 없어... 3300원이 없어서 아이클라우드 결제도 못하고있어
-
고해성사 1
사실 전글에 사진 안 올렸어요
-
그만.
-
자랑한번만한다. 13
참치100원개꿀ㅋㅋ
-
삼반수할건데 노량진 대성 교습비만 장학 100프로입니다. 부모님 한테 한달에...
-
누백 10
영어 하나때문에 엄청난 타격을 받앗덩거 같음 충남대도 영어반영 꽤 컷네 설대문과...
-
키 제외 외모 비슷하다는 전제하에
-
ㅇㅈ 6
펑!!
-
원래도 교육청 적었나? 설마 책 분권해서 책 판매............. 그런...
-
골라보셈
-
일정 드럽게 안맞아서 에휴 2월에 가야지
-
듣기 고트 4
영어 듣기 어떻게 할지추천좀요 본인 듣기 7개틀립니다 제발요..
-
수능영어 중요도 3
이과기준으로 2등급,3등급 나왔을때 어느정도타격임?? 서울 주요대학기준으로 연대제외...
-
오...
-
메타가 ㅈ임 어떻게 이럴수가
-
ㅈㄱㄴ 투투임
-
처음 써봤는데 넘 별로야
-
자야되는데 11
속이 안좋네
사실 저도 그 생각햇는데
머지 싶음 지금
오...과외 준비하시는건가요?
양변 미분해보세요
아닌가
맞내요 이거
g'(0)=0이면 g(x)가 왜 상수인지 알려주실수잇으신가요
g'(0)=0인데
그 외에는 미분계수가 0이 아니라면요??
아 헷갈리네..
충분조건이지 필요조건은 아닌거같은데,,,
아니네 맞네,,,씹
아니네 아닌데
원본 문제 보여주실 수 있나요?
오른쪽항이 0부터 2X까지라 N파이인거 아닌가요'
g(0)이 N파이가 아니면 g(x)-g(0)=2x라고 해도 좌변 우변이 같다는 보장이 없어요
사인제곱을 0부터 2X까지 적분한거랑 0.5파이부터 2X까지 적분한게 다르자나요
g가 1차함수라는 보장이 없어서
시작점이 달라도 얼마든지 적분 결과는 같게 만들 수 있긴 해요
위끝 아래끝 기준으로 좌변은 미지수, 우변은 상수가 나오게 두면 g가 2x+C 꼴로 나와야 함이 보이고, 우변의 한쪽 끝이 0으로 고정이니까 좌변도 f의 절편이 경계여야 함 즉 +n*pi
인 것 같네요
오류 맞는 것 같네요
함수 h(x)=1/2(x-sinx*cosx)에 대해 h'(x)=sin^2(x)니까
h(g(x))-h(g(0)) = h(2x)-h(0)이 성립하고, 이때 h(x)는 일대일대응이니 역함수가 존재해서 임의의 g(0)에 대해 g(x)=h-1(h(2x)+h(g(0)))과 같이 g(x)를 정의할 수 있어요
물론 g(0)=npi가 아니면 g'(0)=0이고요
사진은 g(0)=pi/2인 케이스에서 g(x)의 그래프에요
생각해보니 원본 문제에서는 g'(x)가 나타나는데, 이런 식으로 정의되면 특정 점에서 약간 x^1/3 그래프랑 비슷한 형식으로 미분계수가 발산하는 문제가 있긴 하네요
그렇다고 미분가능이라 명시된 건 아니라서, 여러모로 애매하긴 해요
검토가 안된 문제같네여...
선생님 답변 정말 감사합니다 ㅠㅠ
뭔가 이상한건 느꼈는데
현우진 쌤 교재라서 해설이 무조건 맞을 줄 알았네요
감사합니다!
잘 읽었습니다.
의문이 드는 것은
제가 애초에 질문한 이유가 g(0)=0이 아닐 경우에도 성립하는지 궁금해서 였는데,
선생님의 증명에서는
f(g(x))=0 이면 f(2x)=0 인것을 이용하셨네요.
물론 맞는 말이긴 하지만,
g’(x)=0이어도 f(2x)=0이 됩니다.
그렇다면 f(g(x))=0과 f(2x)=0은 필요충분조건이 될 수 없지 않나요?
g'(x)f(g(x))=2f(2x)이므로, f(g(x))=0이면 f(2x)=0이지만, f(2x)=0이면, f(g(x))=0일 수도 있고, g'(x)=0일 수도 있기에, 필자는 f(g(x))=0의 해와 f(2x)=0의 해가 일치한다는 걸 증명함. f(g(x))=0→f(2x)=0과 f(2x)=0→f(g(x))=0을 각각 증명해 f(g(x))=0⇔f(2x)=0을 도출한 게 아니라, f(g(x))=0→f(2x)=0와 추가적인 증명을 이용해 f(g(x))=0의 해와 f(2x)=0의 해를 구했고, 두 해가 일치했기에 f(g(x))=0⇔f(2x)=0이 도출된 거임