-
보넥도 입덕함 1
후...
-
국어는 고정100 수준인데 단어를 몰라서 이러는건가
-
세계사 화1 2
.
-
크럭스 서대원 컨설턴트님은 메디컬쪽 보시는 컨설턴트분이신가요?? 2
아시는분??
-
몸살 넘 싫다 3
으..
-
그냥 담요단 하나 잡아다가 표랑 채점형만 벅벅 풀어 주고 싶음 이게 제일 마음이 편해
-
다 배신자의 싹이다
-
다음 칼럼은 지구과학 2 과목이 어떤 느낌인지 간결하면서도 얕지 않게 직접 기출을...
-
즛토마요 신곡 7
이걸 이제야 들었네
-
옴뇸뇸
-
1주일만 1
현생살고온다 ㅂㅂ
-
남중 남고 루트 말고 있을 수가 있나
-
ㅈㄴ걍 애매한게 많음 수능에 안나와~라고 하기에는 좀 그렇고 설명하기가 어렵더라구요
-
아니시발 티젠전 2
고삼인데 lck 도 끊어야겟지
-
생글은 들으면서 뭔가 얻어가는느낌 들어도 에필로그는 진짜 그냥 풀면서 되게 쉬운...
-
칼럼 주제 정리할 겸 많은 분들의 의견이 궁금해서 올려봅니다. 2025 2월 최신...
-
분명 수험생커뮤인데 공부얘기 많은게 이상함
-
쌈무나보고가라 2
-
그래도 과외는 얼마를 줘도 자신이 하나도 없음 (수능은 만점) 사탐 과목은 관련...
-
사문 일주일 공부하고 모의고사 10번 치면 40점대는 빈번하게 나올듯 근데 결국...
-
중앙대 약대 교과 2025 입결 아시는 분 있으신가요? 합격자 계시다면 중앙대식...
-
열등감은 치료약 없나 14
열등감 덩어리라 슬프네
-
예를 들어서 담화표지를 사용하여 문단간의 연결관계를 드러내고 있다 이게 선지면...
-
Official HIGE DANdism- Parabola(포물선)
-
돌돌물 0
돌고 돌아 물리로
-
치돈 시켰는디 1
개맛있어어
-
국수영탐 과목별로 어느정도 되어야 과외할 수 있을까요 6
그래도 암묵적인 컷이 존재하는 법이니까요 고2~고3 기준으로 했을때요
-
아…
-
이거 클까요
-
내가 수능장에서 진짜로 말아먹은거라면? 사실은 1등급 나올 실력이 맞다면? 어쩌면...
-
탐구가 성적 제일낮았음
-
그릭요거트 2
아무것도 안뿌렸는데 맛있네 이거먹으면서 다이어트할까
-
6모에 N수 얼마나침? 9모에 얼마나침? 수능엔 얼마나침? 이거 알아야 탐구 사탐런 예상이돨거같은데
-
옯붕이 부산왔다.jpg 28
캬캬
-
볼만한 웹툰 추천 좀 27
장르 불문 아무거나 다 ㄱㅊ
-
너가 재수도 했으니 뭔 말이라도 하라고 하시는데 쩝... 예비고3 사촌동생은...
-
후다세요? 2
네???
-
개념서 있나요?
-
수학 기출 풀때 0
잘풀리면 뭔가 문제 낭비하는 기분이고 안풀리면 하기싫어짐
-
??
-
하면 되는 건가요? 아마도 2월 중순에 추합으로 붙을 거 같은데 지금 미리 자퇴하는...
-
작년에 솔직히 공부 좀 덜한거 같기는 한데 2에서 올라 갈 수가 없는데,,,, 맨날...
-
반수 고민 0
2024수능(백분위) 국어 83 수학 80 영어2 생1 (84) 지1 (81)...
-
본인특 1
순도 100% 똥글임
-
아으뇌아프다 0
-
지능 끈기 베이스 체력 건강 등등 모두 고려했을 때 1
나는 수험생 50% 수준인듯
-
군수질문 0
군대 시스템을 잘 몰라서.. 수능날에 휴가 낸다고 하면 되는건가요? 일병짬에...
-
첫 풀이 2000덕 드리겠습니다! (+자작 아닙니당)
어버버
공리에는 참, 거짓이 없습니다
그또한 무모순이군요
무슨 의로도 말씀하시는지 모르겠네요
공리는 참이다 라는 명제가 있는데 이걸 부정해도 무모순이져
무모순이자 참이죠
헉 그건 또 어떻게 알아내셨죠
그냥 참이라는 뜼
대 쿠 리님 클로드 3.5 소넷 유료써요?
공짜로도됨 제한이 있지만
공리가참이면 결론이참
에서 틀림
결론을 임의의 증명하고 싶은 명제 P라고 해석하면
공리가 참이면 P가 참
??
이순간 말이 안됨
임의의 명제가 참이라고 가정해버림
결론이 아니라
“참인 명제“라고 바꿔보면
말의 논리가 이상하게 흘러갈거임
공리가 참이면 “참인 명제가 참“
이렇게 써내려가야되고
공리는 참이라는 증명이 없음
이말은 귀류법 증명도 없다는 말
이말은 공리를 부정하면 무모순
--> 이파트가 근거없음. 증명이 없다와 부정했을때 무모순이라는것은 다름.
내가 저번에 폭발원리 설명해줬을때 반만 이해한거 같은데
너처럼 공리로 이상한거 설정한다던가, 공리를 부정한다던가, 잘못된 명제를 참으로 가정한다던가 이런 짓거리를 하면 폭발원리때문에 공리계 터지고 “모든 명제가 참이자 거짓“인 이상한 수학체계를 얻게 되므로, 오히려 수학 전체를 담보잡고 귀류법을 펼칠 수 있다는게 폭발 원리의 의의인건데
공리계 터트리는게 너가 원하는거다보니 계속 이상한소리하네...
근데 1차논리는 sound and complete해서 너가 뭔 짓거리를 해도 이상한걸 찾을 수 없을거임
폭발원리에 부합하는 증명을 찾았다면 너의 잘못
하.. 난 왜 이런 세상에 살고있지?
그냥 이상한 소리하고 반응관찰하네..
그냥 참인 명제 자체를 부정하면 무모순임.. 글을 읽기는 함?
님진짜 서울대 맞긴함?
귀류법 증명이 없다-> 공리를 부정하면 무모순, 대우는, 공리를 부정하면 모순->귀류법 증명이 있다
증명이 없다는것과 그것을 부정했을때 무모순이라는것은 아예 다름
공리를 부정하면 모순->공리가 참이라는 증명이 있다. 대우는
공리가 참이라는 증명이 없으면->공리를 부정하면 무모순
리만가설 증명이 아직 없는데 그거 부정한다고 무모순임?
공리가 참이면 그 공리에서 도출된 결론이 참이라는거지..
공리에는 참, 거짓이 없어용