Orbi지형T_[점수를높이는5M.Column] Ch2.등비수열,수열의합'지형도를그리다'
게시글 주소: https://w.orbi.kr/00071447980
Orbi_Column_김지형T_수1(등차등비수열)_개념.pdf
Orbi_Column_김지형T_수1(수열의합)_개념.pdf
[5-Minute Column]
"Major Past Math Questions
Reflecting Trends"
CH2 Geometric sequence
CH3 Sum of a sequence
오늘 소개해드릴 챕터는 등비수열과 수열의 합 파트입니다. 첨부파일에는 등차수열/등비수열과 수열의 합 개념 부분만 올려두었어요. 이 자료는 현강에서 설명한 내용을 정리한 것으로, 필요하신 경우 다운로드하여 읽어보시면 큰 도움이 될 거라 생각합니다.
등비수열과 수열의 합은 등차수열 파트와 달리, 기출문항 중 중요한 문제는 많지 않아서 개념 위주로 정리하였습니다.
그럼 시작해볼게요!
Chapter 2: 수1 등비수열
(Geometric sequence)
등비수열은 무엇보다 공비를 직관적으로 파악하는 능력이 가장 중요합니다. 등비수열의 핵심은 각 항이 일정한 비율(공비)로 이전 항과 연결되어 있다는 점인데요. 공비를 빠르게 이해하고 활용할 수 있다면 문제를 푸는 속도가 훨씬 빨라질 뿐만 아니라, 다양한 응용 문제에서도 효과적으로 접근할 수 있습니다.
이와 같이 다양한 등비수열의 공비를 빠르게 파악하는 능력은 문제를 해결하는 데 있어 매우 중요한 역할을 합니다. 공비는 등비수열의 구조를 이해하는 열쇠이자, 다음 단계로 나아가는 출발점이 되기 때문인데요. 공비를 빠르게 파악하면 수열의 일반항을 구하거나, 합공식을 적용하는 데 훨씬 수월해집니다.
특히, 미적분에서 자주 등장하는 등비급수를 계산할 때도 공비를 정확히 이해하고 활용하는 것이 핵심입니다. 예를 들어, 등비급수의 합을 구할 때 사용하는 공식은 모두 공비의 성질에서 출발합니다.
공비의 크기(절대값)가 1보다 작을 때, 등비급수의 합은 극한값으로 수렴하게 되는데, 이는 무한급수 문제를 푸는 데 매우 중요한 개념입니다. 이때 공비를 빠르게 파악하고 공식에 대입하는 과정이 자연스러워진다면, 복잡한 계산도 한결 쉽게 해결할 수 있죠.
이번에는 등비수열의 합 증명 과정에 대해 살펴보겠습니다. 등비수열의 합 공식을 정확히 이해하고 유도 과정을 기억하는 것은 문제 풀이뿐만 아니라 수학적 사고력을 키우는 데도 큰 도움이 됩니다. 특히 공식을 단순히 암기하는 것에 그치지 않고, 유도 과정을 이해하면 다양한 문제 상황에서도 유연하게 응용할 수 있게 됩니다.
Chapter 3: 수1 수열의 합
(Sum of a sequence)
**(5)**번 문제는 모의고사 기출문제를 풀 때 종종 등장하는 형태로, 한 번 익혀두면 매우 유용하게 활용할 수 있는 유형입니다. 특히, 이 문제는 **(1)**번과 **(2)**번의 결과를 더해 정리한 것이기 때문에 구조적으로 간단하고 이해하기 쉬운 편입니다.
등차수열과 등비수열의 합 공식은 다양한 문제를 빠르고 정확하게 해결하기 위해 꼭 알아야 하는 핵심 도구입니다. 이 공식들을 제대로 활용하면, 복잡해 보이는 문제도 단순한 계산으로 빠르게 정리할 수 있어요.
오늘 다룬 내용은 비교적 어렵지 않지만, 개념을 몰랐던 학생들에게는 매우 유익한 정보가 될 거예요. 무엇보다 중요한 건, 공식을 단순히 외우는 것보다 그 원리를 이해하는 것입니다. 개념을 제대로 이해하면 다양한 문제에서 응용할 수 있어 학습 효과가 훨씬 커질 거예요.
다음 Column에서는 수학적 귀납법에 대해 다룰 예정입니다. 특히, 작년 6월/9월 모의평가와 수능 22번에서 출제된 문항들을 깔끔히 분석하며, 최근 귀납법 문제가 어떤 흐름으로 출제되고 있는지 한눈에 정리해드릴게요. 이를 통해 귀납법 문제에 대한 이해를 쉽게 높이고, 실전에서 바로 적용할 수 있도록 도와드리겠습니다.
혹시 오늘 다룬 내용을 더 자세히 배우고 싶다면, Orbi 인강에서 확인해보세요. 제가 직접 준비한 강의에서는 개념부터 문제풀이까지 하나하나 차근차근 설명해드리니, 혼자 공부하며 놓쳤던 부분도 확실히 채울 수 있을 거예요. 수학이 점점 자신있어지는 경험을 할 수 있도록 함께 만들어가는 강의가 되겠습니다.
오늘 하루도 화이팅하시고, 더 나은 내일을 위해 계속 나아가 봅시다!
Orbi 강의에서 여러분을 기다릴게요!
유익했다면 좋아요! 팔로우! 부탁드립니다!!!
그리고 수학 질문 마구마구 댓글 달아주시거나 쪽지주시면하나하나 상세하게 답장해드리겠습니다아아아
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
김젬마쌤 문학 0
좋나요...?? 교재비가 좀 비싸던데 문학이 많이 약한데 들어볼까요?
-
네
-
전한길 “尹 지지율 60% 넘을 것…비상계엄은 계몽령” 7
[꽃보다전한길 유튜브] [헤럴드경제=민성기 기자] 한국사 일타 강사 전한길씨가 부산...
-
신청 환영
-
수1 삼각함수 처음 배우는 학생한테 중학교 때 삼각비 기억나지? sin pi/3...
-
첫날엔 1시간도 못했는데 휴식이랑 페이스조절이 능숙해짐 뿌듯해
-
팔취좀 17
50대까지 줄이고 싶름
-
성대, 한양대 10
성대 공대와 한양대 공대에서 아웃풋, 취업률, 전망, 교수진, 입결 등등해서 어디가...
-
아니 큐브에 ‘등호로’ 라고 쓰니 욕이라서 답변이 안된대 14
호로는 욕이래
-
초중고를 나왔다고 보기 힘들것같은데
-
전세계약사기
-
슬슬 잡담태그 떼볼까
-
지2 하시는분 4
여기에 살아계시긴 한가요 살아계시면 공부 어떻게 하시나요
-
보고 싶다 0
예쁜 그대 돌아오라 나의 궁전으로
-
사각턱이랑 침샘 두군데 맞을건데 효과 좋나요? 5개월정도 간다하던데 진짜인가요?
-
최저 시급 보다만 높게 받으면 되지! 처음이니깐 학생이랑 학부모 입장에서 아깝지...
-
반수 0
수시 4등급대 ㅈ지방대인데 걍 학교 생활 즐기고 싶어서 가는 게 맞을까요.. 학교가...
-
백악관. “백억”관. 팜하하하하하하하
-
상대적으로 쉬워보이지 않을까오? 출제포인트가 다르나
-
헬창 있음? 12
이런 몸은 대체 운동을 몇년 한거냐?? 진짜 갑빠라는 말이 탁 나오네ㄷㄷ
-
자러감 10
ㅅㄱ링
-
지방 인프라라는게 12
단순히 놀게 부족하다 이런게 아니라 가끔 "이걸 안 팔아?"라던가 "이것도...
-
나는 인문이 존나게 약하기때문에 매일 배경지식이라도 쌓게 인문지문을 존나 풀어야함...
-
사랑해요 누나 11
워 아이니 찌에찌에가지마 베베
-
안녕하세요 신입 인사 "박습니다"
-
집에 혼자인데 2
노래방 해야겠다
-
무게중심 6
G베가지마 베베
-
베가지마 베베
-
아니 짐정리를 다 해버려서 공부를 할 수가 없잖아?! 4
어쩔 수 없이 책을 읽어야겠는걸~ 유튜브 보는 거 보다 나으니 이거 완전 럭키요단이자나!
-
2025 잘생긴 윤리 김종익 교재가 있는데 2025버전 강의 들어도 될려나요...
-
가끔씩 연락은 1명 친구는 1명...
-
왜들 기하는 안하냐 난이도 표점 공부량 고려해보면 미적탈출 충분히 할만한 점수인데...
-
죽는 것보다 나은데 참.... 적어도 만 28이면 절대 어린 나이도 아니고...
-
중학생 싸게 과외하는거…
-
쉽지않네 쉬운거날먹이나 하려했는데
-
진짜들은 오르비대신 현생을 탈퇴함
-
아는 사람 기다리는 중인데
-
F=mg 2
베가지마 베베
-
공부 할까 말까 4
7시부터 잇올 가서 6시까지 했는데 또 해야되나 롤체 플레3을 가야되나
-
이미 오르비 할거같이 생겼으면 7ㅐ추 ㅋㅋㅋ
-
억 아악악악
-
앱등이들아 큰거오나? 13
농협 쓰는데 신한 만들어야겠당
-
좀 깰듯.. 반듯한 대학생인줄 알았는 선생님이 오르비에 으흐흐 거리면서...
-
예적금넣는건 미친짓임 (체감물가상승률 > 예적금 이자율) 무조건 빅테크에 투자해야함...
-
“쌤 물개물개예요?”
-
밖에 내놓고다니는 손이랑 얼굴만 까맣네
-
저의 집으로 글씨체 암살단들이 와서 저를 죽일거 같습니드 저를 지켜주세요 그들의...
-
꼭마햄 논란있다고해서 보랴고했는데 안열리네 뭐노
-
어디가 더 동강남?
재수했을때 수학 성적 진짜 많이 올려주신 고마우신 지형쌤.. 역시 인강 진출 하실 줄 알았습니다ㅠㅠ
헐 오랜만이야ㅠㅠㅠ 고마워!!! 갠톡좀주세요ㅎㅎㅎ