생2칼럼) 하디 빈도 암산 ~분수해석을중심으로~
게시글 주소: https://w.orbi.kr/00071448904
안녕하세요, 물개입니다. 오늘은 하디-바인베르크 법칙 문항에서 쓸 만한 가벼운 계산법 하나 들고 왔습니다. 아마 이미 알고 사용하시는 분들도 여럿 계실 거예요
칼럼 써보는게 처음이라서 글이 좀 지저분할 수 있습니다. 양해 부탁드립니다
기본적인 문제부터 시작하겠습니다.
조건 3 해석해 봅시다. A가 A*에 대해 우성이니까, 검은색 몸 개체수는 AA+AA*입니다. 이제 해당 조건의 분수를 AA*/(AA+AA*)으로 생각할 수 있습니다. 5/7이라는 숫자를 저 형태에 맞추어 다시 써 보면, 5/(2+5)가 됩니다. 다시 말해, AA와 AA*의 비는 2:5입니다. 하디 연습을 많이 하셨으면 여기서 바로 AA:AA*:A*A*=16:40:25가 떠오르실 수도 있습니다. 그러면 베스트지만, 시험장에서 생각이 안 날 경우를 대비해 다른 방법도 알아 두어야 합니다. AA:AA*=p^2:2pq=p:2q이므로 2:5=p:2q입니다. p:q를 구하려면 5를 반으로 나누면 되고, 2:2.5니까 p:q=4:5입니다.
빈도 구하는 관점에서 배워갈 점이 몇 가지 있습니다.
AA와 AA*의 비가 주어졌을 때 | |
AA*와 A*A*의 비가 주어졌을 때 | |
AA와 A*A*의 비가 주어졌을 때 |
첫 번째와 두 번째 상황은 사실상 같은 겁니다. AA*에 절반을 하면 p:q가 된다는 것이죠.
세 번째 상황은 AA와 A*A*의 비가 p^2:q^2이기 때문에 당연한 사실입니다.
매번 p^2:2pq라고 생각해서 계산하면 낭비가 심하기 때문에, 이 정도는 외워두는 게 시간 단축에 도움될 것입니다.
풀이 초반에 썼던 분수 해석도 시간 단축에 매우 유용하게 쓰입니다. 교과서적으로 풀려면 2pq/(p^2+2pq)=2q/p+2q=5/7과 p+q=1을 연립하셔야 하는데, 일차방정식 푸는 게 어렵지는 않지만 시간 낭비가 매우 심합니다. 특히 이건 멘델, 비멘델 관계없이 적용할 수 있기 때문에 더욱 알아두셔야 합니다.
비멘델 문항도 하나 보겠습니다.
(다른 얘기지만, 일반적으로 조건이 더 많이 들어간 쪽이 비멘델 집단일 가능성이 높습니다. 멘델 집단은 p^2:2pq:q^2이라는 조건이 자동으로 붙기 때문입니다. 22수능에서는 이렇게 멘델 집단을 찍는 풀이를 막기 위해서인지 두 집단 모두에 대해서 같은 조건을 서술했는데, 덕분에 오류가 터졌습니다.)
조건을 보나 선지를 보나 I이 비멘델 집단일 것처럼 생긴 문제지만, 확신할 수는 없습니다. 조건 4와 5를 해석해서 I의 유전자형 빈도를 구하는 것을 목표로 삼읍시다. 형태는 조금 다르지만 결국 이것도 앞서 다룬 분수 해석과 본질적으로는 다르지 않습니다. A의 빈도는 A의 개수/(A의 개수+A*의 개수)라는 점에서, AA*와 A*A*의 합에서 A개수:A*개수는 3:5입니다. 상남자답게 그냥 A가 3개라고 생각하면, AA*가 3마리입니다. 그러면 AA*에서 A*도 3개 나오니까, A*A*에서 A*가 2개 더 나와야 합니다. 따라서 A*A*의 개체수는 1마리이고, AA*:A*A*는 3:1임을 알 수 있습니다. 한 번에 간추려 보면
이렇게 분수를 변형시켜 표현할 수 있습니다. 개체 한 마리당 유전자 두 개가 나온다는 점만 유념해 둡시다.
조건 5는 훨씬 해석하기 쉽습니다. AA에서 A 2개, A*A*에서 A* 2개가 나오니까 저 조건은 그냥 A와 A*를 합쳐서 A의 비율을 구하는 것과 마찬가지입니다. 5/7은 5/(5+2)와 같기 때문에 AA:A*A*=5:2입니다. 조건 4에서 구한 것과 합쳐 보면 AA:AA*:A*A*=5:6:2이기 때문에, 비멘델 집단임을 확실히 알 수 있습니다.
조건 4만 봅시다.
AA+AA*에서 A 빈도 | |
AA+AA*에서 a 빈도 | |
AA*+A*A*에서 A 빈도 | |
AA*+A*A*에서 a 빈도 |
이 분수 해석하는 게 이 문제의 목표입니다. 주어진 확률이 1/2보다 작기 때문에 일단 A가 열성, A*가 우성입니다. 그렇다면 주어진 확률은 짧은 털 수컷(AA*+A*A*)에서 긴 털 대립유전자(A)가 나올 확률, 표의 세 번째 상황에 해당합니다.
p/(1+p)=4/9라네요. 형태만 보면 A/(B+A) 형태니까, 우리가 했던 그 방법 그대로 여기에 적용하겠습니다. 4/9는 4/(5+4)로 표현할 수 있습니다. p/(1+p)=4/(5+4)죠? 좌변의 p가 우변의 4, 좌변의 1이 우변의 5에 대응하는 형상입니다. 따라서 p:1이 4:5, p는 4/5임을 보시면 됩니다.
1/(1+p)=3/5일 때 p를 구해 볼까요? 3/(3+2)로 만들면 p가 2/3임을 바로 알 수 있습니다.
이와 같이, 분수 해석을 통해 간단한 조건이 주어졌을 때 대립유전자와 유전자형 빈도를 빠르게 구할 수 있습니다. 어려운 내용은 아니지만 체화해 두면 계산을 10초라도 줄일 수 있으므로, 타임어택이 전부인 생2 시험에서는 결코 작지는 않을 것입니다.
내용이 도움되셨다면 좋아요, 질문이나 요청사항 있으시면 댓글 부탁드립니당
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
주관적 재미티어로 일반사회>>>지리>윤리=역사임
-
조금 된거긴 한데
-
경제+화1은 신종변태?
-
[칼럼] 독서 왜 어려울까? 약간의 국어 교육학 개론을 곁들인 9
국어 점수를 잘 받는 방법은 간단합니다. 잘 푸는 것이죠. 하지만 쉽지 않습니다....
-
여러 해설을 맛보는 건가
-
아직 전역 안해서 내년에야 입학할 것 같은데 잘 지낼 수 있겠지?
-
강기원T 시즌2부터 합류하면 많이 빡센가요? 아직 미적분 진도를 다 못 빼서 개념...
-
경제에 감동이 있는거임...
-
헬스끗 6
갓생러로 살기 0일차
-
걍 경제할거면 물리 ㄱㄱ
-
혹시 블랙홀이라고 생각하셨습니까? 당신의 그런 차별적인 생각이 우리의 미래를 더욱...
-
최저용으로 학원에서 어삼쉬사랑 수특 풀고 있는데 어삼쉬사는 풀면 한스텝당 2문제...
-
7개중에 4개를 못풀어 야발 ㅜㅜㅠㅜㅜㅜㅜㅠㅜㅠㅜㅠㅜㅠㅜㅠㅜㅠㅠㅜ 이건 짬때리고...
-
굿닥터 미국 일본 터키 중국에서 리메이크된 초히트작 법률 드라마로 치면 이상한...
-
학벌로 최상위권이 아닌데 대체 인간이 맞나 싶은 능지를 가진 괴물들이 있음
-
ㅇㅇ
-
전투력 올라가긴한다 그래도 힘드렁...
-
N제들 수십개씩 사서 하루컷 며칠컷 인증하면서 N제 평가하시는 분들은 적백...
-
혹시 깜깜무소식이라고 생각하셨습니까? 당신의 그런 차별적인 생각을 청소년들이 듣고...
-
든든한 국밥같은 포지션이었는데..
-
혹시 흑흑이라고 생각하셨습니까? 당신의 그런 차별적인 생각이 세상을 더욱 혼란스럽게...
-
서울이랑 수원 놀기에 어떤점에서 차이나요?
-
사실 뻥임뇨
-
오해원 : 노래 잘부름, 연예인임, 군대 안감, 요즘 뜨는 라이징스타 이해원 :...
-
미분 하지않고 그리기
-
너무 쉽지 않음? 맨뒤에 문제도 길어도 한 5분 고민하면 풀리던데
-
아 경제 ㄹㅇ 4
(대충 경제에 미친 몇몇 오르비언들을 낚기 위한 글)
-
전역기원 3일차 0
일병 1호봉이에요
-
미국 백악관이 현지시간 31일 트럼프 정부의 불법 이민 단속 실적을 소개하며 한국...
-
코스모스 3회독하러간다
-
연대 지능형 반도체 -시스템 반도체 아님(계약학과X) -학사 3년 (조기졸업...
-
으어 6
죽겠다
-
목시 성적순 0
이번에 성적순 3합 8이던데 본인은 3합 7임(영어2도 1로 쳐준다 해서)...
-
경제로 도망갈까
-
그냥 청년경찰 보다가 관심생격서 그러는데 군 제대하고 입학하면 어떻게됨? 원래...
-
경희대 합격생을 위한 노크선배 꿀팁 [경희대25][필수교양 소개 및 수강신청 꿀팁] 0
대학커뮤니티 노크에서 선발한 경희대 선배가 오르비에 있는 예비 경희대학생, 경희대...
-
최지욱 불도저 12
최지욱 불도저 친구가 유기해서 줬는데 시중n제랑 퀄 비비나요?
-
윤 대통령 측 석동현 "임기중의 대통령 끌어내리는게 오히려 내란" 1
윤석열 대통령에 대한 헌법재판소 탄핵심판 절차가 진행중인 가운데, 윤 대통령의...
-
군수 관련 질문 0
본인 05년생 재수중 중도포기 후 11월 입대 후 군수 시작. 1.원래 군대에서는...
-
그 외도 ㄱㅊ
-
생명1 한종철 0
한종철 자분기 들으려 하는데 작년이랑 비슷할까요?
-
수학 n제 추천좀요 11
예비고3이고 3모기준 3등급정도 노베라서 기출 여러번 돌리고 있는중입니다 낮2...
-
자신의 졷을 사방팔방 간수를 못하겠어서 변기커버 아래에 분비물을 묻히지나 말던가...
-
트럼프, 엔비디아 젠슨 황 긴급회동 “좋은 만남”...H20칩도 규제하나 1
대중국 AI·반도체 규제 정책 논의 딥시크 충격 이후 CEO와 첫 만남 대중국...
-
비문학 못하면 기출 덮고 책 읽는게 맞지 않을까요 11
기출 보면 허구한날 소재 비교/대조, 범주파악, 내용일치 안에서만 노는데 기출만...
-
대성 메가패스는 다 있음요 가계도 버리고 18개 맞추는 전략 쓰고 있었는데 시간...
-
수학황 들와바 24
이거 내가 잘못풀고있는거임?? 뭐지? 어디가 잘못돤거임?
-
팔굽혀펴기랑 윗몸일으키기 같은 기초 베이스는 좀 만들고 쇠질을 하라고!!! 이것도...
투과목 칼럼은 개추