컴공 일기266
게시글 주소: https://w.orbi.kr/00071460551
n이 충분히 크고 적당한 λ가 존재해서 np = λ 라면, 이항분포 B(n,p)를 포아송 분포 POI(λ)로 근사시킬 수 있습니다.
사실 이항분포는 개별 시행마다 성공 확률과 실패 확률을 세세하게 따지기 때문에, 확률을 계산함에 있어서 복잡합니다.
특히 n값이 커지면 커질수록 그렇지요.
포아송 분포의 장점은, 이항분포처럼 개별 시행마다의 확률을 따지지 않고, 단위시간 / 구간 당 평균적으로 몇 번을 성공했는지만 따져도 적확한 확률을 구할 수 있다는 것에 있습니다. 또한, 이항 분포는 시행횟수 n과 확률 p를 매번 조정하면서 확률을 계산해야 하지만, 포아송 분포의 경우는 모수(λ)를 적절하게만 변환시켜 주어도 단번에 값을 구할 수 있죠.
예를 들어, 어떤 일을 독립시행한 횟수가 100번이고 어떤 일이 일어날 확률 P = 0.01이라고 가정합시다.
또 그 일이 2번 성공할 확률을 구한다고 가정해보죠.
그러면 X~B(100, 0.01)이고 시행은 독립적이므로 100C2 * (0.01)^2 * (0.99)^98
이 됩니다. 확률을 구하기는 했지만, 이 값이 대략적으로 얼마 즈음인지 단번에 파악하기가 쉽지 않죠.
하지만 시행횟수가 충분히 크므로 포아송 분포를 적용할 수 있는데, 이런 경우 조금 더 쉽게 구할 수 있습니다.
POI(λ) = x! / e^-λ * (λ)^x (x : 성공한 횟수, λ : 모수)
여기서 λ = np = 100 * 0.01 = 1
POI(1) = 2! / e^-1
e^-1 ~= 0.3679 정도 되므로 확률이 대략 0.1839 정도라는 사실을 알 수 있습니다.
포아송 분포의 확률질량함수식이 비교적 이항분포 확률질량함수식보다 계산하기 용이하다는 장점도 있지만,
이 분포의 가장 큰 강점은 유연성에 있습니다. λ를 자유롭게 잡을 수 있거든요. 하루 평균, 일주일 평균,
1년 평균… 원하는 값을 조정해 줄 수 있기 때문에 개별 시행에 집착하는 이항 분포보다는 조금 더 현실적인
분포라고도 볼 수 있겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
X반고 정시파이터라 3모 못보면 학교생활이 험난해질 예정이라.. 고2 마지막...
-
아. 제가 배부르다고 했잖아요...
-
아시는분 있남........
-
아저씨 왜 여기계세요?
-
고싶다 하아아
-
예수를 믿는 크리스찬이지만 젊은 신자 유입이 없는거 이해가감 3
솔직히 교회가 욕먹을 짓을 많이 한것도 그렇고 종교라는게 MZ들하고 안맞고 익숙치가...
-
이고 자퇴 어캐해야함?? 엔드림 들어가도 안뜨는데 ㅠ
-
수시 모집요강 정리하기 힘들어서 컨설팅 가기도 하나요? 1
약대중에 1. 재수생 지원 가능한지 2. 교과 3-1까지 반영인지, 3-2까지...
-
제가 예비 140등 정도로 추정되는데 가능성 있을까요? 83명 뽑아요. 작년 충원률...
-
생각보다 많이들 풀어봐주셔서 놀람요 ㄷㄷ… 감사합니다들
-
먹을 친구도 돈도 없다 마시면 살찌니까 먹지 말자고 세뇌하고 있음
-
괜찮은 사람도 있긴한데 이상한 사람 비율이 훨씬 많고 만나서 성격유형검사 하라거나...
-
북해도 여행할때 들른 고속도로 휴게소
-
시대인재 기숙 1년 처박으시면 의대 가실듯 ㅋㅋ
-
오르비망함? 0
-
풀이에 들어가기 앞서 첨언을 하자면 기출만 잘 공부해도 쉽게 풀 수 있는 문제였고...
-
유미픽하고 져서 우는 케리아마저 사랑스러워보여서 범인 찾기 할 때 열심히 쉴드 치고 다님
-
안녕하세요 :) 디올러 S (디올 Science, 디올 소통 계정) 입니다....
-
흠
-
롤하고 싶다 2
동시에 롤하기 싫다
-
한지 세지 1
한지 세지 난이도랑 공부량 차이남? 둘중에 한개만할건데 추천좀
-
신설과는 0
선배가 없을텐데 새터나 MT이런거 없나여
-
객관적으로용 ㅇㅇ 작수 기술지문이랑 비슷한 난도 뭐 있을까요
-
여캐 투척 2
-
이에흐이아 헤헤 3
줄선물이 잇는데~
-
이신혁 강의가 3시간에 4만원씩 주면서 들을만한가? 7
자료만 받고 벅벅 풀면 되지 않을까?? 근데 이신혁지구과학연구소 사이트에서 자체교제...
-
답은 이따가 알려드림 사실 나도 푸러야댐
-
저질렀다 5
-
앞으로 매주 토요일마다 1~2세트씩 올려볼 예정입니다. 지문이 좀 낯설긴 하겠지만...
-
누구 계신가요?.. 김동욱?
-
이번에 영어난이도 때문에 중상위권대학은 작년보다 누백이 떨어질까요? 0
제가 알기로 영어 절평으로 바뀐후에 2,3등급 비율이 제일 적은 시험이...
-
ㅇㅇ?
-
시대인재같은 재종학원은 한달원비가 얼마나 하나요??? 6
인터넷에 보니 삼백만원 조금 넘는다던데 맞나요??? 엄청 비싸네요
-
살이 너무 찜 "지방"의니깐 푸흡흡흡
-
이게 바로 driver diff
-
25사관20 2
-
오르비한정피카소 9
-
수시러인데여 정시도 어느 정도 생각하고 있어서요ㅠㅠ 뭔가 내신이랑 수능 둘다...
-
취르비입갤 4
정신똑바로차려야지
-
계획대로 하지는 않겠죠 진짜 ㅋㅋㅋㅋ 서울대 시립대 건국대 동국대 홍익대 과기대 지거국
-
그렇게 욕하고도 또 키게 되는..
-
- 김치찌개 - 1. 비계가 어느정도 있는 돼지고기를 중강불에 볶는다 2. 기름이...
-
어떻게 뉴클레오타이드가 3의배수가 아닐수가있죠? 가공하고나서 14개라는데 1코돈이...
-
탄단지 샐러드(편의점샐러드는비추) 햇반200(필수) 후추닭가슴살(존맛탱)...
-
시간이 금방 가네 어떤분이 말씀하신 것처럼 한 7시간 하면 될듯
-
초반 빌드업 쉽게 하려면 덱을 다 알아야되네
-
부모님께서 인강패스비,매달 20만원씩 지원은 해주신다고하셨고 저는 110만원정도...
-
노래 미쳤다 (개좋음)
첫번째 댓글의 주인공이 되어보세요.