미적분 문제 (2000덕)
게시글 주소: https://w.orbi.kr/00071781582
첫 풀이 2000덕 드리겠습니다!
(+ 유명한 문제입니당)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수학 확통 봐도 갈수있는 공대 ㅇㄷㅇㄷ있냐
-
지울때마다 옷이 알록달록ㅅㅂ
-
확통 인강 ㅊㅊ 0
대성패스만 있고 수능미적이어서 내신만볼거라 3월까지 끝내야되는데 뭘들어야할까요.?...
-
사탐1 과탐1 5
인서울 공대나 이과계열 학과 지원은 가능한거죠?
-
쌍지하고있는데 세지가 나라이름도 어렵고 재미도 없는데 마침 제가 세무사 지망하는데...
-
요네 개재밌다 3
슥 가서 샤샤샥 썰고 돌아오는거 개재밌네
-
올해 상반기에 할거 17
대학 잘다니기 국어 고정1 만들기 수학 고정98 만들기 탐구 뭐할지 결정하기 영어...
-
레어팔아요 2
칸나 빼고
-
(완) [10000덕] 물2 자작 (30-Final Boss) 28
Good Luck. 최초 정답자에게 10000덕을 드립니다. (풀이 과정도...
-
김과외 노가다 돌렸는데 3.5 부르시는데 내가 이 값어치의 인간은 아닌것같은데
-
안녕히주무세요 5
내일 4시에 얼버기로 찾아옴
-
ㅇㅇ 충분함?
-
아 많이 뒤쳐져잇네, 열심히 치곡차곡 해서 따라가야지. X 앞에 잇는 넘들을 빠르게...
-
백분위로 첫번째는 국어고 두번째는 수학인데 1년안에 만든다 할때 뭐가 더 어려움?
-
(그러면 안됐는데) 그냥 호기심에 시대 지원해봤더니 전장(라이브러리 제외)이네요....
-
약간 에피에다가 3
설뱃 은테 프사 쿨톤이 젤 예븐 거 같음
-
솔직히 영어는 하기만 한다면 1등급 받을 수 있잖아 5
공부에 제약받지 않을 만한 머리를 가지고 1등급을 받지 못했다는 건 노력을 하지...
-
나는 강인한 사람이다 14
올해 연말까지 체지방 7퍼 토익 990 성적 장학금 받기 KICPA 1차 HSK...
-
사람들이 1
나 ㅁㅊ놈으로 볼 거같아 이거 보고 넘 웃겨서키웃참하느라 죽는줄 알앗네
-
경제일단 해보자 22
개념만 대충 벅벅 해보고 25,24수능을 풀어보자 만약 할만해 보이면 좋아 그대로가...
-
갓생선언 9
오늘열두시에잠들어 내일여덟시에일어날것입니다
-
머에여?
-
오르비 잘자요 4
오늘은 좀 늦게 자네
-
하필 인강 듣는 날이라 6시간 밀렸는데 어떡하지 이거..
-
그것만 챙겨보는 오르비언 (본인이라는 것이 아님) 분명히 있다 좋아요 ㄱㄱ
-
난 무지성문제풀이 박으면서 몸이 기억해야 한다고 생각하는데 15
티처스 보면 그게 아니라더라 잘 모르겠음 뭐가맞는거지
-
오늘부터 0
나무를 얼마나 잘 타는가로 등급이 나뉜다 함
-
네.
-
에잉..
-
ㅁㄱㅍㅅ 공유 1
배송비 무료되는 ㄷㅅ 있는데 ㅁㄱ 있으신 분 중 공유하실 분 구합니다! 연락주세요!
-
힘들지만 즐거웠어요.. 오늘 저녁은 편의점 음식으로 고고헛 오늘의 프사 2)
-
해냈다 해냈어 6
음 그래그래 훌륭해
-
예..아오 ㅅㅂ
-
서울대 메디컬 제외하고는 인서울 대학 지원할 수는 있는고죠?
-
빠지는 분 계신가요??
-
24명 뽑는데 27번임
-
의대가 증원으로 인해 지금 입학생들은 천룡인급은 아니라고 들었습니다. 그리고 치대는...
-
만표 151짜리 나형 시험지 라고 시뮬레이션 돌려 확인한 수학교육쪽 논문이 나온 적...
-
오르비 특) 19
꿈과 희망이 가득한 뉴비들의 공부질문엔 답글 안 달리고 이상한 뻘글,ㅇㅈ,여르비에만...
-
고대 학과 수석 0
고자전은 수석이어도 크림슨 장학금 말고는 장학 주거나 수석이라고 알려주는 것 없나요?
-
서울대 메디컬 빼고 다른 대학은 대부분 지원할 수 있는거죠?(인서울 기준)
-
팔란 해적단 출발
-
반박은 안받아요
-
1.재수 어디서 어떻게 시작해야할지 감도 안와요 ㅠ 뭐 어케해야하나요 기숙이...
-
마지막 점공확인 0
국숭세라인인데 둘중 하나라도 추합으로 붙을까요..?? 작년, 재작년엔 추합 한바퀴이상돌았습니다.
-
외화 유출범 등장 14
으르렁 왈왈왈
-
념글 노짱뭐임 1
ㄹㅇ
-
놀랍게도 우리나라 옛속담임
미분해야겠네
어캐푸는거야
a[n] = 2^(1/n²) + 3^(1/n²) + ... 2^(1/n)
∫[1, 2ⁿ] x^(1/n²) dx ≤ a[n] ≤ ∫[2, 2ⁿ+1] x^(1/n²) dx
{1 - 1/(n² + 1)} (2^(1/n + n) - 1) = P[n] ≤ a[n]
≤ {1 - 1/(n² + 1)} ((2ⁿ + 1)^(1/n² + 1) - 2^(1/n² + 1)) = Q[n]
ln(P[n])/n = ln{1 - 1/(n² + 1)}/n + ln{2^(1/n + n) - 1}/n
lim(n→∞) ln(P[n])/n = lim(n→∞) ln{2^(1/n + n) - 1}/n
= lim(n→∞) [ln{2^(1/n + n) - 1}/ln{2^(1/n + n)}] × [ln{2^(1/n + n)}]/n
= lim(n→∞) (1/n² + 1)ln2 = ln2
ln(Q[n])/n = ln{1 - 1/(n² + 1)}/n + ln{(2ⁿ + 1)^(1/n² + 1) - 2^(1/n² + 1)}/n
lim(n→∞) ln(Q[n])/n = lim(n→∞) ln{(2ⁿ + 1)^(1/n² + 1) - 2^(1/n² + 1)}/n
= lim(n→∞) ln{2^(1/n² + 1)}/n + ln{((2ⁿ + 1)/2)^(1/n² + 1) - 1}/n
= lim(n→∞) ln{2^(1/n² + 1)}/n
+ [ln{((2ⁿ + 1)/2)^(1/n² + 1) - 1}/ln{((2ⁿ + 1)/2)^(1/n² + 1)}]
× [ln{((2ⁿ + 1)/2)^(1/n² + 1)}]/n
= lim(n→∞) (1/n³ + 1/n)ln2 + (1/n³ + 1/n)(ln(2ⁿ + 1) - ln2)
= lim(n→∞) (1/n³ + 1/n)ln(2ⁿ + 1)
= lim(n→∞) {ln(2ⁿ + 1)/ln(2ⁿ)} × ln(2ⁿ)/n × (1/n² + 1)
= ln2
lim(n→∞) ln(P[n])/n = lim(n→∞) ln(Q[n])/n = ln2
∴ lim(n→∞) a[n] = ln2
적분을 이용한 풀이도 있네요ㄷㄷㄷㄷ
https://orbi.kr/00071716950
위 문제에서 사용했었던 방식으로 풀어봤습니다
혹시 정석적인 풀이는 뭔가요?
적어주신 풀이가 정석적인 풀이입니다 :)
아 상합은 2로 해서 조절하나 했는데 그냥 이게 정석이군요. 근데 lim x->inf 저 식은 없어도 풀 수 있지 않나요?
ln(2^n-1)/n 극한을 가장 쉽게 처리할만한 극한을 주었습니다 :)
이런 문제들도 많이 풀면 금방 풀게 될까요? 이거도 처음에 식조작 뻘짓을 하긴 했는데ㅠ푸는 데만 거의 20~30분 들어서
'경시'용 문제이기 때문에 오래 걸릴수 밖에 없는 문제라 봅니다! 경시용 문제의 특징이 '발상'이기 때문에 오래 걸린다고 해서 너무 신경쓰실 필요는 없을 듯 합니다!