수학 자작 3문제 심심한 사람 풀어보셈
게시글 주소: https://w.orbi.kr/0008354037
3번째는 기출 표현바꾸긴데 왠지 오류 있는듯 한 느낌이...
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
오지콤인듯뇨 1
교수님을 보면 가슴이 욱신함뇨..
-
한달 넘은듯 유산소 너무 유기했나
-
맞나? 글 읽는속도가 빠른편은 아니긴함
-
Team 04 이제 해체됨?
-
ㄹㅇ..
-
아는척좀해봐써여
-
이번 수능 풀어봤냐길래 미적분은 개념 이제 막 끝나서 공통만 풀었다고 말햇은데 그럴...
-
사실이죠? 군대갔다가 재수하냐, 재수하고 군대가냐 차이인듯?
-
작년 70%컷이 952점인데 저도 올해 예상환산점수가 952점이거든여 근데 텔그...
-
속눈썸 정리 어케해야됨요? 자주 빠져서 눈에 들어가는데 걍 손으로 좀 뽑아도 되나요?
-
이탈리아, 오스트리아같은 선진국 의대도 개방됐구나 학비도 엄청 싸다 하는데 의사...
-
2번방에서 질문 하나 어어어어 하다가 다시 답변해도되겠습니까 하고 또 절다가 답변완성함 조졋다 ㅅㅂ
-
서글프뇨
-
4키로 8
ㄹㅇ 저질 체력 돼서 다리가 후들거림..
-
근데진짜공통 4
님들도 작년이 올해보다 어려웠음?
-
광명상가 가능할까요?? 어디까지 가능할까요..!
-
이잉 졸려 0
-
과는 어디 가든 상관없어요
-
"칸나" 뭐지 왜 얘도 탑이냐
-
“연대지지선언“ 우하하팡파레~
-
외대가 너무 멋져서 (훌리는아님) 올해 경희나 중앙 붙어도 외대 갈거같은데 주변에서...
-
진짜 시간 너무 부족하던데...
-
ㅈㄱㄴ.. 통합수학 확통 높2따리가 풀만한 거로 추천 부탁..
-
님들도 인생이 빡세다고 느껴지시나용?? 요즘 취업문이 완전 ㅈ창났다던데
-
하... 제발 컷 낮게 나오게 해주세요
-
복습하는것들은 인강,수학 틀린문제,발상 이정도고 1.강의 직후 복습 2.당일 8시...
-
"해가 땅에 떨어진격" 지구멸망사주
-
시대인재 전형 0
가채점 결과 12135이렇고 영재고 10등 초반인데 우선선발은 안되고 성적순 선착순...
-
어떤 문제 풀땬 개빠르고 어떤문제 풀땬 갸느림
-
콱)헐 개못해 4
소름돋아
-
저는 1월 25일!
-
대성마이맥에 올라오셔서 검색해봤는데 대치동에서 날리셨던분이 신가봐요
-
2024 년 11 월 26 일 | 제 1219 호 2025 수능 D-352 여러분의...
-
할거 없는데
-
작아서 들고다니기도 좋음
-
지금 군대에 있어서 7월에 강대K 시작할때 파이널부터 들을까 하는데 언제쯤 대기...
-
날씨가 이게뭐니
-
정시로 넘어오려 각을 재네요 이게 바로 현여기의 패기인가 흠......
-
진짜 막판에 2에서 4로 고침…
-
마비카 레ㅛ츠고
-
할 만할까요? 설경이 목표입니다 대학 간판에 미련이 남는 한편 수험 생활을 오래...
-
토익 2트 ㅇㅈ 18
(인증글 올리는걸 깜빡해서 뒤늦게 올려봅니다..) 당시 몸이 많이 아팠던지라 시험에...
-
의외로 나 13
10대임
-
??? 가치없음???? 메디컬 말고 갈만한 과 엊ㅅ는거임??
-
왜 자꾸 21살로 계산하게 되지
-
옛날에는 진짜 여기서 좋은 정보 많이 얻고 국어 4->1로 올렸는데 수학 칼럼도...
마지막문제 밑에서 4번째줄 이해가...
f (a)가 하나의 상수로 취급해서 k로 치환하면
x=k에서 함숫값=우극한인데 좌극한과는 같지않다
그래프로 표현하면 x<k은 y=0 x>=k 에서는 y=1
요런게 예가 될 수 있겟져
그런거라먄 좌극한부분 g (x)가빠잤네요 그래도 답은 모르겟다는 ㅋㅋ 모든 g (f(x))가 좌극한에서 끊어지는데 a에선 연속이라....
마지막에g•f (t) 함수에서 x=a 일때 연속인데 x가아니라 t인가요?
결국 합성함수 f 에서 g로 가는데 좌극한이 되면안되니 우극한,함숫값으로만 식이 결정되야되고
따라서 f (x)가 x=a에서 좌극한,우극한 취했을때 양쪽에서 둘다 감소하면서 떨어져야 f (a)+가 되요
극솟 값찾는 건데 이차함수 y=x^2에서 원점이 꼭짓점이잖아요 딱 그모양 생각하시면 됨
미적분 안배우셧으면 어려울수 있을듯 함수의 극한같지만 사실 미적분 문제에요
아 13은 12345254321
14는 12345454321 풀었습니다
첫번째문재는 아직 미적분안배워사 패스
네 ㅋㅋ 정답이에여 근데 14번 식 어떻게 세우셨나요? 원래 곱셈정리로 변AB구하고 점~직선으로 높이구하게 하는게 의도 였는데 친구들한테 풀어봐라 하니 다 다르게 풀더라고여..
13번도 계산 안하고 답 바로 보이셧나요?
1사분면 삼각형만봤을때 a3이랑 a4의 중점이 t/2,t/2이므로 원점과 직선사이는 t/2루트2
a3 a4 의 x값차이는 곱셈정리로 구하고 거기에 루트2 곱했네요
13번은 계산안했습니당
네 ㅎㅎ 완벽하게 푸셨네요 난 또 곱셈정리 생각하는게 너무 어려운가 싶었음 ㅋㅋ
역시 오르비가 다 수준이 높아여
맨 처음 문제에 (나)가 성립하려면 g(x)>0에서 항상 감소하고 g(x)<0에서 항상 증가해야하는데 (다) 때문에 그건 불가능 하기 때문에 일일이 넓이를 비교해주란 문제인가요? 출제의도를 잘 모르겠네요
(나)조건 부등식 왼쪽식이 정적분~급수에서 오른쪽 높이잡기 한거고 오른쪽이 정적분이라 정적분이 크려면 감소함수여야 하고
a가 양수만 되니까 x>0에서 g(x)는 감소함수다 라고 이끌어내길 바랐는데여
음..그렇기 할라했으면 부등식에 정적분 구간을 위끝아래끝에 임의의 양수 두개가 다성립한다 라고 해야 맞는건가요
극값이 존재하고 최고차항이 음수인 삼차함수 생각해보면 쭉감소하다가 증가하는 구간에 a가 걸쳐있어도 저 식 만족 할수 있는것 같네요
'임의의 서로다른 두양수 a,b에 대해 a~b까지 오른쪽 높이 잡기 한것보다 인테그랄 a~b가 항상 크면 그함수는 양의실수에서 감소함수이다'
이렇게 표현해야 하나요
일정한 구간에서 저게 성립한다는걸 보여주는게 나을 것 같아요.. 지금 조건 그대로 가면 감소함수라는걸 뽑아낼 수 없어요..