(안녕맨)<수요 수학칼럼- 정적분의 동치 변형>
게시글 주소: https://w.orbi.kr/0008742407
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
240628의 30번 버전인 것 같아서 개빡세겠다 생각했었어요
-
그곳에서는 부디 행복하기를...
-
제발다시는보지맙시다
-
등급이 하나씩은 내려가는 꿈꿨어요 ㅠㅠㅠ 마킹 잘했겠죠 국어+수학 11번~15번은...
-
님들 높공기준이 0
전화기컴신 인가요?
-
원서 어떻게 넣는게 좋을까요 수능 이번이 처음이고 (나이 20대 초반) 원서도...
-
옯티콘인 척 하면서 진짜 개발자한테 알림 간대요 ㄷㄷ
-
오늘은 포기해야되나
-
광운대는 자전 인문이고, 경영/경제 전공할 것 같고, 인천대는 자전 자연이고, 공대...
-
비밀 보장 ! 함께 고민해요. 쪽지 환영.
-
ㅇㅇ?
-
와 근데 ㅇㅈ 어케 함 10
방금 잠깐 ㅇㅈ해볼까 생각해봤는데 지인한테 걍 바로 걸릴 거 같음 ㅋㅋㅋㅋ 어떤...
-
맨날맨날 새벽까지 공부하고잇으니까 더빡침 메디컬이나 로스쿨생이면 이해라도가겟음 아오
-
국어 비문학 연습할 때 관련 생윤 문제 넣어놔도 될거같음. 재미 ㅈ댐 ㅋㅋ
-
지듣앨 2
님들은 듣지마세요
-
이거 때메 최저 못 맞춘듯.. 하..
-
여자 5
여자들은 왜 자기가 이쁘다고 생각하지? 자존감이 너무 높아
-
으흐흐
-
뭐가 더 싫음? 3
사유가 있다면?
-
큐브같은데 자작문제 올려봐야겠다흐흐
-
ㅇㅈ메타인가요? 2
오늘은 밤 새고야 만다..!
-
서초메가 0
다녀본사람 후기좀
-
내일 학교 가야 하는데… 아 참고로 실버 5임 ㅎㅎ 평생 브론즈에 살다가 처음으로...
-
자랑거리 1
카카오 26주 적금 성공ㅋ
-
현역인데 뱃지달고 오려면 공부 죽도록 해야지… 내년 고3 생활이 얼마나 ㅈ같이...
-
독서론 바로 다음에도 박는구나 싶었어요
-
이거 시리즈 별로 읽고 공부 시작함
-
(대충 낚시용 사진)
-
.
-
…광고 좀 꼴리긴한데
-
한 한서삼정도라고 보면 되나..? 고세종이랑 비교했을 때 원주가 더 높음?
-
1.사회성 떨어짐2.남들보다 1-2년 뒤쳐진 건 사실이니까 더 열심히 살아야겠다는...
-
반영비 사과탐여부 가산점 메디컬 전체 2026시행계획 보면서 정리하는데 생각보다...
-
천개 찍어도 똑같이 나오나요
-
큐가 안잡혀요 3
-
앙그라마이뉴...조선의 유일한 구원...
-
죽음
-
목표 달성 못해서 기분 안 좋음
-
사실 다들 아셨겠지만 9년 전 사진입니다.
-
물2 해야겠다
-
오르비 ㅇㅈ하고 2
오티날 취한 상태에서 너 오르비 요즘 안함? 소리 들어봐야 정신 차리지
-
체대인데요 고대세종은 진짜 널널하게 실기 몇개 절어도 합격권 인천대는 고대만큼은...
-
내신도 그렇고 정시도 그렇고 항상 아쉽게 등급 못 올라감 수시수학2 2등급...
-
그 인증은 9
잘생기고예쁜분만해주세요
-
뉴아에르에서 뉴진스는 컨셉으로 떴다면 아이브는 비주얼로 떴다... 물론 둘다 컨셉...
-
ㅇㅈ하지마셈~ 7
캡쳐하는 샛기들 진짜 있음
-
둘중에 어디가 나으려나요? 전과 생각이 있어서 건국대가 전과가 더 쉽다던데......
-
여르비 인증좀 2
쪽지바로보낼게
오오 저번에 ㅎ좌표이동에 연결되는 내용이네요
그러네요 평행이동 부분에서 적분구간은 점이고 피적분 함수는 그래프죠 ㅎ
그래프는 선대칭인거죠? 대칭의 과정이 이해가 잘안가네요ㅠㅠ
이동의 대상에 따라 점의 이동과 그래프의 이동이 있구요
이동하는 방법에 따라 평행이동과 대칭이동이 있습니다
선대칭은 대칭이동중에 하나구요(대칭이동은 대표적으로 점대칭 선대칭이 있어요)
그니깐 점의 선대칭이 있을수가 있고 그래프의 선대칭도 존재합니다
점의 이동과 그래프의 이동은 이동하는 방법자체가 확연히 차이가 있는데
점은 자리가 변하는거고 그래프는 변수를 변하는거에요 완전히 이동방법이 다릅니다
좀 더 자세한 칼럼은
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
참조하시면 됩니다
잘읽었습니다ㅎ
읽고난 후 조금 더 생각해봤는데요, 대칭이 되는 상황이 만들어지기 위해선 같은 함수가 평행,축,점대칭이동 등으로 이동된 상태여야 한다는거 구요.
그리구 포개서 일치하게 만들 수 있는 방법이 점대칭, 선대칭 두가지가 있는거라고 생각했습니다.
f (-(x-a-b)) 는 y축대칭과 x:a+b 평행이동으로 이동된 상태인데
그래프로 봤을땐 선으로 포개지고, 이동과정을 봤을땐 y축대칭(선대칭인데 x축에 수직)은 선대칭으로 포개지느냐 점대칭으로 포개지느냐를 결정하게 되는거 같고 a+b 평행이동은 어느위치에서 대칭이되느냐를 결정하는것 이라고 생각했습니다.
y축대칭에 x축에 수직인 선대칭인걸 써놓은건 x=a+b/2 대칭도 같은상황이기 때문이에요.
그러면 x,y축대칭,평행이동된 함수는 선대칭관계이고 y=x,-x대칭,원점대칭된 함수는 점대칭관계인지 궁금합니다..."-"
우선 선대칭과 점대칭을 구분하실때
선대칭은 수직 이등분선과 관련이 있구요 점대칭은 중점과 관련이 있어요
보통 대칭된 그래프나 점을 찾을때도 이 이론을 이용해서 구합니다
대표적인 선대칭 함수가 2차 함수(대칭축에 대칭)구요 점대칭 함수가 유리함수 (점근선의 교점에 대해 대칭)에요
그리고 쉽게 생각해서 축도 직선입니다 x축은 y=0 이라는 직선, y축은 x=0
이라는 직선
그니깐 x축 y 축 , y=x , y=-x 대칭은 다 선대칭을 의미하죠
근데 x축도 대칭되고 y 축도 대칭되는 경우는 원점 대칭이 되므로 점대칭이라고 해도 되는거구요
이것만 봤을때도 어떤 함수를 여러번 대칭하면 점대칭이 될수도 있고 선대칭이 될수도 있는데 어떤 원칙이 있는게 아니라 그때 마다 특이한 결론이 나올수 있다고 생각해요
아하 이해됐어요! 고민하는동안 어렴풋이 넘어간내용을 다시 짚고갔네요
감사합니다~^^
이해가 됬다니 다행이네요
분석하는 모습 정말 보기 좋습니다 화이팅!!
(밑에거는 중복된 코멘트 ㅎ)
선생님 칼럼을 모두 모아서 볼 수 있도록 링크를 해 주시면 감사하겠습니다
선생님 칼럼이 좋은데 모아보기 불편해서 그렇습니다
네 다음에는 링크 걸게요
우선 #안녕맨 으로 검색하시면 그동안 했던 칼럼 보실수 있습니다