(안녕맨)<화요 수학칼럼 - 적분이란? >
게시글 주소: https://w.orbi.kr/0008782522
![](https://s3.orbi.kr/data/file/united/2038703877_jlPAdSO5_ECA0951.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_etjvRUb1_ECA0952.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_G01ZFrTn_ECA0953.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_wjMyoKAN_ECA0954.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_b2JvNVSU_ECA0955.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_Ey604DMf_ECA0956.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_2aSDvRif_ECA0957.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_73qjLJ2g_ECA0958.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_GVJgnqCF_ECA0959.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_mtWfi7RZ_ECA09510.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_lNIZ1vW4_ECA09511.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_RzMZTo9K_ECA09512.jpg)
![](https://s3.orbi.kr/data/file/united/2038703877_lTJWqfnB_ECA09513.jpg)
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
9. 정적분의 동치 변형 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8742407&showAll=true
10. 외워두면 좋은 면적 공식 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8759526&showAll=true
11. 2차 곡선에서 접선의 방정식 공식화 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8766382&showAll=true
12. 미분이란? : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8776957&showAll=true
cf) <8월 1일 대치동 오르비 학원 개강 안내>
8월 1일 (다다음주 월요일)부터 월수금 8주 커리로 안녕맨의 끝장인강 총정리 & 안녕맨의 손으로 만든 2017 기출시험지 10회 자기시험지 만들기 현강이 시작합니다
관리자님 말씀으로는 오르비 역대 최고의 시설이라고 하네요 (완전 모던하게 꾸몄대요 ㅎ)
학원 위치는 대치동 은마아파트 입구 사거리 교차로 근교 메인대로변에 있습니다
(교차로에서 대치사거리 쪽으로 걸어서 3분거리 ) 주소는 대치동 931-22
시간은 문과 6시~8시 // 이과 8시~10시 구요 한시간은 끝장인강 잠시 휴식후 나머지 한시간은
기출시험지 풀이 하는 수업을 하게 됩니다
8월 1일 첫수업은 무료 강의 인데 그날 오시는분들은 반드시 안녕맨의 손으로 만든 2017 대 수능대비 기출시험지 1회를 풀고 오셔야 합니다 (이과는 http://class.orbi.kr/class/776/ ,
문과는 http://class.orbi.kr/class/777/ 여기서 자료 다운 받으시고 진행하시면 됩니다)
당일 수업 교재는 임시로 대여 해 드립니다(물론 수강 등록을 하시면 무료로 드립니다)
참고로 무료 개강 수업 후 조 추첨해서(네이버 사다리를 돌릴거에요) 문이과 각각 한분씩
컬쳐랜드 문화상품권 1만원권 1매를 선물로 드릴거에요 ㅎ
자세한 정보는 http://class.orbi.kr/group/85/ 여기서 확인하시면 됩니다
아무쪼록 많이 참석해 주셨으면 하는 바램입니다 감사합니다 꾸벅~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
과기대 msde vs 건동홍 전전 어디감?
-
고대 교과 우수 2
고대식 1.9인데 무조건 교과 우수가 유리한거죠? 뽑는 인원이 적길래.. 점공 물리 추합 지1 서울
-
등수 계속 떨어질까봐 쫄린다고요
-
삼수 나이 리스크 10
여자입니다 쌩삼이나 삼반수 고민 중인데 현실적으로 나이 리스크 클까요?
-
초6때 어떤 여자애가 내 얼굴을 뚫어져라 보더니 갑자기 인상을 찌푸리고...
-
내가 하고 싶은 건 성공한 남자임 어차피 여자애들은 외모 많이 안 본다
-
곧 만나뵙겠습니다.
-
이제 자야겠다
-
아니 나도 여친이 개잡전문대생보다는 좋은 학교 다닐 수록 좋겠지 8
근데 개잡전문대 다니는 김태리정채연채수빈 닮은 여자 vs 서울대 다니는...
-
잘생기면 능력 없어도 돈많이버는 여자랑 만나면 됨
-
출장기념 심심해서 ㅇㅈ 11
집가고싶어
-
얼버기 6
나갔다와서 8시에 눈감고잤는데 솔직히 3시는 됐을줄알았는데 12시네 ㅋㅋㅋㅋ
-
그거 하나면 된 걸까... 큰 성과를 이루지는 못했지만 한 10년 뒤의 내가 올해를...
-
앙??
-
첫눈에 반했었죠,,#
-
학종 경재학과 가려는데 공대보다 경제학과가 컷이 높은 경우도 많던데 왜 그런가요...
-
중2병 억제를 굉장히 잘햇다는거에요 덕분에 흑역사 같은게 거의 남아있지 않아요
-
둘 다 붙으면 어디감
-
과외 궁금점 0
올해 수능 본 현역입니다 제가 정시로 대학을 갈 예정이라 2월에 대학 합격증이...
-
돈 벌 수 있는 것도 아니고 여자 꼬시는 데 좀 유용한 거 말고 외모가 사용가치가...
-
몇번째로?
-
또 연애떡밥이야 0
락스 다 먹었는데 에휴 사와야겟다
-
7칸 부턴 발뻗잠인 것 같은데 6칸은 떨어질 가능성이 더 높을까요ㅜ
-
빡치네
-
이신혁 2
오늘부터 신청 시작한 라이브 교재비 혹시 얼마정도 나오셨나요?
-
받아들여줘 그냥...
-
전글과이어집니다
-
그러니 좋은대학가세얌 ㅇㅇ
-
내가봄
-
7월 7일 생윤 시작 개념 1회독 쭉 듣다가 앞부분 기억 안 나서 롤백 한 단원...
-
뭐가 됐든 0
착하고 열심히 사는 사람들이 행복한 세상이 됐으면 좋겠다 물론 나는 해당하지 않음
-
진심인 거냐
-
세단 광명상가 라인이라 진학사가 많이 정확하긴 어려울 것 같긴 한데 반영비 딱...
-
질문좀) 님들아 군대에서 하루에 3시간씩 공부하다가 0
주말에는 6~7시간 정도 해서 3~4등급 정도가 나왔는데 이게 썡으로 재종이나...
-
군수 성공함 언미물지 21111 군수 성공보다 전역이 훨씬 기쁘네요 ㅋㅋ 아무거나 질문 ㄱㄱ
-
앞으로도 요로시쿠 오네가이시마스! (애니 보다보니 아는 일본어가 생기네요..)
-
어어그래
-
오리비 이야기 8
-
각각 11명,. 5명 뽑는데 그냥 하나는 대형쓸까요 다는 정말 넣고싶은 곳이 없어서 고민이네요
-
내 서글픈 첫사랑 썰 13
.
-
18틀렸을듯 CD만붙잡고 와리가리하다가 뭐지시발 내뱉었는데 BC BD비교해서 도출하는거라니..
-
저는 문과고 상경계나 통계 지망입니다… 중대 부동산이 경제학사가 나온다고 들어서 쓸...
-
국어능력 날라간 절망감이란.. 진짜 인생 험난해짐 국어 높1에 수학 2컷높3...
-
육사 학종 2
내년에 육사에 학생부 종합전형 같은게 생긴다는데 내신 몇등급정도면 들어갈까요?
-
물2 실습 2
토크 공부하러 나옴
-
숭실대 글미 여기 취업 잘될까요..? it대이긴 한데 좀 애매해 보이고 궁금해요 컴...
-
김과외에 재능기부로 무료과외 가능하나여?
-
아직 없다...
안녕맨님 궁금한게있는데
함수 f a부터 b까지 의넓이가 왜 f를적분한 함수의
함숫값의 차로 구할수있나요?
예를들면 일차함수의 면적을구하는데 이차함수의
함숫값의 차가 일차한수의 면적이되는게 신기해요
일차함수의 함수값은 길이구요 면적은 길이를 두번곱해서 구해요 길이가 1차면 면적은 길이의 제곱이니깐 2차가 되요
이해가 잘않되요
자세히 설명 드릴게요
인테그랄은 원래 무한급수죠 연속된 무한개의 값을 더할때 쓰는거구요
우선 구분구적을 이해할때 길이가 합해서 면적이 되는게 절대 아닙니다
즉 f(x)를 더해서 면적을 만드는게 아니라 아주 얇은 직사각형을 무한개 더해
서 면적을 구한다고 생각하시면 되요
이때 세로에 해당되는게 f(x)구요 아주 작은 가로에 해당되는게 dx 입니
다 직사각형은 가로와 세로를 곱하는데
여기서 가로에 해당되는 dx가 x에 관한 1차식이라고 생각하시면
실제 면적을 구할때는 f(x)보다 한차수가 높아지죠 (적분하게 되면 차수
가 한차수 높아집니다) 그래서 면적이 그렇게 되요
그니깐 함수값이 1차이면 면적은 2차식이 되고
함수값이 2차이면 면적은 3차
즉, 함수값보다 차수가 한차수 높은 면적으로 나옵니다
서로 빼는거는 구분구적의 계산이 위의 칼럼대로 부정적분해서 양끝값더
한것의 차이라는게 증명됬기 때문에 그렇게 쓰는거구요
그거 교과서에 있어요
쉽게 생각하면 되요
F(x)라는것은 0부터 x 까지 f(x) 그래프 아래의 면적을 의미해요
그러니 a부터 b까지의 면적은 0부터 b까지의 면적에서 0부터 a까지의 면적을 빼면 되므로 F(b)-F(a) 가 되는거죠
대학 미적분학1에서 다루는 내용이군요
hello man(bjh)쌤 홧팅!!!! ^^
감쌈다 정답이오쌤님ㅎ
글씨옆에 잇던게 눈에익어서 봣더니 벤젠(C6H6)였어....
와..
미분은 그냥 괜찮네이랬는데
적분은 내가 강의할때 하는말 다담겨있네ㄷㄷ추천합니다 글 정말 잘읽었어요
감사합니다 ㅎ
공감 ㅋㅋㅋㅋ 과외준비할때 다른것도 읽어보구 참고해야겠어요 안녕맨쌤파이팅하세요!
네 약간이라도 도움이 됬으면 좋겠습니다ㅎ 감사합니다
인티그럴?
쌤 궁금한게 책에 나오지도 않았는데
어떻게 깊이있는 개념을 터득하신겁니까?ㅠ
완죤 부럽습니다.. 책에나온개념도
완전히 이해못하는디ㅠ
구지 말하자면 연륜이죠 ㅎ
제가 처음 과외했던 친구가 78년생 고3 3명이었어요 ㅎ
그 이후 5년정도 휘트니스센터할때 빼고는 수학을 놓은적이 없네요 ㅎ
구지--->굳이..ㅜㅜ
아 넵 ㅠㅠ
좋은 글 감사합니다 ㅎㅎ
.도움이 됬다니 다행이네요 ㅎ