미분가능성에 대한 오개념 잡기
게시글 주소: https://w.orbi.kr/0003659704
이 명제에 대해서 생각해봅시다. 참이라는 생각이 드시나요?
|
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
개념.기출(김성재t)+ebs(수특.완)+특특.실전300(강민웅t)+다이나믹스n제...
-
이번수능에서만큼은 페이커할것이다.
-
근데 수능원서 접수번호로 홀짝 알 수 있지 않음?? 2
그래서 예전에 박종현이 짝수 나오길래 교무실에 게속 전화해서 제2외국어 실수로 잘못...
-
마법의 요정 9
달이 기울고 별무리가 흐르는 어느 야심한 밤, 오늘도 힘든 실모 러시를 끝내고...
-
근데 인증보고 나면 10
이후로 그분 글올라오는거 볼때마다 폰잡고 글쓰는게 실감나게 상상되어서 뭔가 웃겨요
-
굶주리다 1
비통사적 합성어 마즘?
-
좋겠다..
-
현장응시가 6평 단 한 번밖에 없었다는 것임... 6평때도 긴장감 지렸는데 수능은...
-
몸상태가 이상함 0
어제는 몸은 안피곤하고 정신이 피로했는데 오늘은 몸이 피곤하고 정신이 밝음
-
평가원 점수 1컷에서 2컷극 초반 나오고 김승모도 못쳐도 2등급 이내로 나오는데...
-
일단 상식도 풍부해지고 재밌는 판례도 많고 전문직도 될 수 있음
-
나는 바보다
-
보정 표점 백분위 등급 어떻게되나용
-
어..? 4
몸상태가 조금... 불길한데
-
두루미 가족 13
-
나는 현역 수험생활 때 하루 아침에 늦게 일어나거나 뭔가 컨디션 조지면 늘 그날은...
-
아과기준 진짜 대애애애충만 라인정도만 잡아주심 고맙겠음 언미영생지 95 80 1 50 41
-
흐아아아아아아암
-
문과 성대 10
대충 어느정도면 가지? 수학 높3이거나 2등급이라는 가정하
-
국어 : ebs 엄선경으로 문학 전체 복습 때리기 Ebs 독서 경제 물리지문...
-
14시간 잠 14
인생 좃망 재수생 ㅁㅌㅊ
-
왜 그딴식으로 풀리는지 걍 화가 ㅈㄴ남 하..
-
누가 아침부터 학교에서 밥을 먹는지.... 점심을 천원에 팔아야 한다고 생각해요
-
대단하지
-
수학 남은 기간 2
기출이랑 지금까지 푼 사설 다시 풀기+모고 어떰? 다들 어케할거임?
-
오느레 추천곡 1
개찐따라 옛날것만 계속 재탕해서듣는중.... 홀홀홀...
-
감기 환자들 너무 많아서
-
머리만 아프고 두뇌회전이 안됨
-
나형사탐에서 언미생1화2까지 우여곡절이 참 많았지만 제 걱정과는 달리 영어 한국사...
-
병원갈지말지 고민중 11
흠냐뇨이
-
이번 고2 영어가 엄청 어려웠는데 수능은 이거의 얼마정도로 더 어렵나요?
-
고양이 7
감정이 고양되네요 깔깔
-
지금 수2 한완기 하고 잇고 뉴런 들으려규 했는데 수1은 까먹어서 쎈발점 빠르게...
-
겨울부터 시대인재 라이브 들으려는데 낮은 2등급한테 어떤 강사 분이 좋을까요?...
-
수면 맞추기가..... 시간 맞춰 23수능 풀려했는데 걍 풀어야겠네
-
이감 6-3 88 이해원 파이널 0회 100 국어만 좀 하자
-
무한로딩중
-
이제뭐푸냐
-
아무말없이 1
평균이라하면 산술평균인가요
-
전 순댓국밥
-
겨울이 올까요? 0
-
오늘 오픈이라고 했는데 왜 소식이 없지….
-
극 자체가 좀만 어렵게 내도 아예 손도못대고 터지거나 손대다가 시간빨리고 터지고 틀림
-
파이널만 봤을땐 뭐가 더 고난도인가요?
-
아라비아따ㅎ 5
셀프요아정 ㅎ
-
대략 평가원 시험으로치면 몇번대 난이도임?
-
차라투스트라가 누굴까요 15
퀴즈입니다.
-
드럼vs 일렉 4
추천좀
-
여기도 쟁쟁한 도시들이 정말 많음
와 정리 좋네요.
그런데 이런 수식은 어떻게 올리신거죠? 그림파일로 올리신건가요?
아까 제가 글 쓸 때도 쓰기 불편해서 혼났는데.;;
그런데 마지막 pf) 두번째줄의 우변이 좀 이상한거 같애요. h→0+ 가 t→-0으로 바뀌어야되는거 아닌가요? 네번째줄도.
헉 미처 수정하지 못한 부분이네요....지적 감사합니다....
그리고 저는 한글2010에서 수식 입력기로 글 씁니다 ㅎㅎ
감사합니다. 그런데 수학 공부하다 이런 Case 보면 극단적인 짜증이 나는 건 저뿐인가요....;;;;
짜증나는 건 당연한 듯 ㅋㅋㅋ....좀 당연하다시피 넘어가고 싶은 내용에 일일이 태클 걸리면서 엄밀하게 파고 들어가면
머리 아프죠 ㅠㅠ...
올ㅋ!
흔히 빠지는 오류 정리 해주셔서 감사합니다.
결론에서 미분가능하다라는 조건이 명시되어 있으면
도함수의 연속성과는 별개로 미분계수의 정의를 쓰지 않고 g'(a)=h'(a) 라고 생각해서 풀어도 무방하다라고 하셨는데,
f(x)=x^2sin(1/x)도 결국에는 전 구간(x=0 포함)에서 미분가능하다고 전제되어 있는 것 아닌가요?
다시 말하자면, 가장 처음에 제시한 명제가 거짓이고 그 반례가 존재하는 이유가
미분계수는 존재하지만 도함수가 불연속인 함수가 있기 때문 아닌가요?
도함수가 전 구간에서 연속인 상태에서 저 명제가 거짓인 경우(반례)가 있나요?
만약에 없다면, 밑에서 예를 들어준 문제도 도함수가 전구간에서 연속이기 때문에
미분계수의 정의에 의한 계산이 아닌 도함수의 극한값으로 미분계수를 대신 구한다고 설명하면 오류가 있는지 지적바랍니다.
도함수가 전구간에서 연속일때는 처음에 제시한명제가 항상 참인듯.
그래서 미분계수랑 도함수의 극한이랑 같기때문에 그냥 대놓고 쓰라는소리같은데요.
처음보여주신식에서 간단히 도함수가 연속이냐 아니냐의 물음으로 치환가능한것 아닌가요?
질문이 있는데 불연속인 함수도 정적분이나 부정적분이 가능하다고 들었는데 고교과정에서 불연속인함수에 관한 적분문제가 포함되는지 궁금합니다...
원래는 안 된다네요. 구간을 나누어서 하면 다시 그 구간내에서는 연속이기 때문에 적분은 가능하지만요. 충분히 구간을 적당히 나누어서 하는 문젠 나올 수 있다고는 생각합니다. 극단적으로 f(x)=1(x가 유리수) or 0(x가 무리수) 이런 건 기존 우리가 알던 빙식으론 불가능하기에,..
그함수요 적분불가능합니다. 리만적분을 배우시면 왜그런지알수있어요 ㅇㅅㅇ
모르면 교과서를 찾아 보세요~~ ^^ 교과서에 나와 있어요..
피적분함수가 연속임을 전제로 합니다..(고등과정에서는)
그리고 대학때는 유한개의 점에서 불연속인거 허용하죠? 리만적분정의하면서요 ㅎ
배울땐 피적분함수가 연속이라 배웠느데 한참 친구들끼리 수학얘기할때 그냥 얼핏 얘기하던게 리만적분얘기였나보군요ㄷㄷ 어디서배웠길래;;
전 대학교 일학년학생입니다ㅎ 중간고사 시험범위에요 ㅎ
네~~ 유한개의 불연속 점이 있는 경우도 적분가능하죠...
truedoor님 네 유한개의 점에서 불연속이고 위로나 아래로 유계하면 정적분이 리만합에 의해 가능합니다 ㅎ
좋은글 이네요 중간고사때 저런 오개념을 갖고있어서 하나 나갔죠..
제가 이 글을 좀만 빨리 봤다면 ㅠㅠ
그러니까 원함수가 미분가능하다면 도함수가 연속함수일 수도 있고, 아니면 빵꾸 뚫린 함수, 그러니까 연속은 아니지만 극한값은 존재하는 함수일 수도 있다는 얘기인가요?
어떤함수가 미분가능하면 원함수는 연속.
어떤함수가 미분가능하다고 도함수가 연속임을
보장할 수는 없습니다. 하지만 도함수가 불연속함수라 하더라도
빵꾸뚫린 불연속함수형태는 나올수는 없고 sin1/x와 같은 형태의 불연속함수만 나옵니다.
이창무T가 생각난다.
좌변=중변 이 맞는 명제이고, 좌변=중변이 우변과 같은지는 별개의 문제인거죠.
오타가 있네요.. f(x)=x^2 sin(1/x)를 가지고 반례를 들은 부분의 네번째 줄
"x=0에서도 가능하다. 따라서 f'(x)는 실수 전체에서 미분가능하다"
라고 하셨는데
f'(x)가 아니라 f(x)로 쓰여야 맞을것 같아요. f'(x)는 x=0에서 연속조차 만족하지 못하는데 f'(x)가 실수전체에서 미분가능할 수 없죠.
오타 맞나요?
문과인데 이 부분 보고 순간 멘붕.ㅠㅠ
으으 아는거같은데 모르는거같기도하고 ....첫번째 도함수연속과 미분가능성의차이는 이해했는데 ....
두번째문제에 미분가능하도록 만들라고했을땐 좌우도함수의 극한값을 이용해도되는이유가 .....?이해가안되네요
으
...;;저도그부분멘붕 ㅡㅜ정의를다시살펴봐야겟으요..
http://joy3x94.blog.me/70166533165
제 블로그 글인데 뭐 거의 같은내용이지만 좀~더 자세한 설명이 있으니 함 읽어보세요 ㅋㅋ
http://joy3x94.blog.me/70166533165
제 블로그 글인데 뭐 거의 같은내용이지만 좀~더 자세한 설명이 있으니 함 읽어보세요 ㅋㅋ
........문과랑도 연관있나요?
이해가 잘 안되는데;;;;
둘다 미분가능한 함수인데 어쨰서 차이가 나는거죠?