[박주혁t] 이해원모의고사 A형 3회 29번 해설강의입니다.(무료 동영상)
게시글 주소: https://w.orbi.kr/0004915724
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
나무위키로 때워야지
-
오늘은 밤샘 애니를 22
수능두 끝났는 데 누가 날 막아 하하하
-
컴공의 재미는 4
알고리즘 문제 풀기
-
간단 소개 - (나)는 2가지 조건에 의해 가의 도덕적 의무에 긍정적으로 볼 것...
-
공부 권태가 더 심하네.. 한국가면 공부하려했는데
-
쉬워보였는데 능지 이슈로 못품 쉬웠나요?
-
안녕. 8
-
누군가가 보고 싶은 저녁입니다 분명 온다고 하셨는데
-
표본 보면 다 화학 끼고있네 ㅠㅜㅠ
-
상수를 변수로 취급해서 풀어야하는 문제도 있나요?
-
인복 하나는 2
메디컬권인듯
-
이거지
-
모음조화 9
모음 좋아
-
안녕하세요 고2 노베이스 학생입니다 수시는 5.6이였다가 정말 가망이 없을 거...
-
그냥 하루종일 13
모니터링을 듣는중
-
벌써 곧 12월이고 곧 등급이 나옴..... 심지어 고3들이 알아오는거까지 하면...
-
배꼽 3
킥킥 히히 똥오줌 발싸
-
아직도 머리 속에서 안 떠나감....
-
남음.. ㅎㅎ 생각보다 빠르다
-
수능 끝나고 커뮤 여기저기 돌면서 최악의 시나리오대로 등급컷 올려치기하고 물타기...
-
입대 이틀 실화냐 11
26년 안 올듯
-
6,9,수능 2등급 인데 Att 소문항 1-1~2 과논 절반 합격 ㄱㄴ?
-
메가에서 현우진 시발점+뉴런 기하 살까 하는데 좀 아깝기도 해서 그냥 배성민이나...
-
물1 난이도비교 5
ㅇ
-
'배꼽'은 'ᄇᆡᆺ복>ᄇᆡᆺ곱>뱃곱>배꼽'의 변화를 겪은 거라 원래부터 '곱'이었던...
-
도형, 백터 어려운 문제들 어떻게 공부 하셨나요? 그냥 기출 여러번 풀어보며 공부하면 될까요?
-
하 고민되네
-
수학 기출문제집 1
수학 노베라서 과외중인데 쌤이 개념 하면서 기출도 같이 하자고 하셔서용 자이나...
-
엄,,
-
소문의 벽은 되게 감명 깊게 봤는데
-
대체 뭐지 0
난 이감을 시즌 1,2,3을 사뒀음. 난 이감을 2-2까지만 풀고 1부터...
-
ㅎㅇㅎㅇ 8
-
수학 쎈 help 11
근데 모 덕코 걸라는데 저 xdk인가 그건가용?
-
누구 하나는 분명히 죽을텐데 누가 죽을까
-
지1:고2 내신 때 빡세게 해놓음 지2:고3 내신 대비 같이 할 수 있음 같은...
-
나만 두개 배웠나
-
1200 플마 120자 인건가요..? 한 1100자 쓰고 글자 수 다 못채웠는데..떨어질까요..
-
ㅈㅂ
-
내신도 해가 지날수록 빡세게 보는 것도 맞지만 전공 연계 교과이수과목도 점점 많이...
-
어떤 여성분 나루토 부모님 죽는 장면 보고 울던건 귀여웠음.
-
검11고 다시쳐야겠구만
-
수리과학부 전정 컴공 여기는 진짜 높네
-
내신은 20수 박아도 안사라지니까 정시파이터한다고 던져놨으면 인생 망하는거 맞죠?...
-
주변에 다 시간남았던데 이번에 난이도 쉬웠나요?
-
반가워
-
프사 7
너무 저질인가..?
-
(아무도 궁금하진 않겠으나) 2024 이대 자연계 논술 손풀이 0
해답지랑 약간 다르게 푼 부분도 있습니다만, 방향은 거의 비슷합니다. 중간에 낚시...
-
만약 내가 무인도에 불시착 했을 때 살아남으려면 어떤 학과를 전공했어야 살아남을 수...
-
근데 (푸근한)... 일본 여배우상
-
공군 질문받음 7
뜨끈뜨끈한 845기에요
아니 해설강의 글에 난데없이 심쿵사진을 올리심 어쩌나요..ㅎㅎㅎ
암튼 감사합니다. 개인적으론 다소 하자가 있는 문항이 아니었나 싶네요..
네 저도 약간 아쉽네요ㅠㅜ
사진은 저도 요새 애들을 많이 못 보는터라서요ㅠ
1. 가장 좋은 풀이는 미통기 내에서 합성함수의 미분법으로 푸는 풀이를 정당화 시키는 것이겠죠. g(t)를 적분으로 표현한 이후에 적당히 구간을 쪼개 주면 [6-t/2, 6] 구간에서 f(x)를 적분한 것을 다시 x에 대해 미분하는 것을 f(x)를 x축 방향으로 평행이동시킨 함수를 생각해서 그냥 적분을 해치워버리고 다시 미분하는 방법이 있습니다. 물론, 이 과정에서 일종의 치환적분의 내용이 들어가지 않는 것은 아니나, 함수의 평행이동 정도로 충분히 미통기 범위 내에서 정당화 시킬 수 있을 것입니다.
2. 부정적분에 대한 설명은 약간 위험할 수 있습니다. 애초에 수능정도의 시험에서 부정적분으로 애를 먹는 경우가 있을리는 없겠지만, 설명하신대로 부정적분을 이미 '정해진 함수 F(x)'를 적당히 평행이동시켜 얻은 함수로 보는 것은 부정적분에 대한 맞는 설명은 아닙니다.
해설을 보면 f(x)의 부정적분을 1/4 (x+2)(x-6)^3을 평행이동시킨 함수로 볼 수 있다(또는 봐도 무방하다)는 식으로 설명을 하시는데, 애초에 indefinite integral은 일종의 multi-valued function이므로 given function을 평행이동시켜 얻은 함수로 보기보다는 그냥 int_a^x{f(t)dt}와 상수차(즉, 평행이동 차이)만큼 나는 함수들은 모두 부정적분이므로 그 중 계산하기 편한 것을 '선택'하겠다고 설명하시는 게 좀 더 맞을듯합니다.
사실 이게 애초에 미적분학의 기본정리가 의미하는 바이기도 하니까요.
2번은 동의합니다^^
앞으로는 검토를 더 열심히 하겠습니다ㅠ