[박주혁t] 7월 교육청 문과 30번, 3년전 문제?
게시글 주소: https://w.orbi.kr/0008726495
이번 나형 30번 문제는, 이과생들이었다면 어디선가(?) 풀어보았을 법한
문제라고 생각됩니다. 가까이는 이번 6평 30번의 연계문제로 추정되는 EBS문제가 그러하죠.
그런데 이게 문과 문제로 나오게 되면,
상당수 학생들에겐 어렵게 느껴지게 될 거라고 봅니다.
그리고 제 생각은, 30번자리엔 어울리지 않으나, 미적분 문제의 “좋은훈련”으로는
꽤나 매력적인 소재임에는 틀림없는 듯 합니다.
문제는 이겁니다. (안푸신 분들은 풀어보시고)
그리고 교육청 해설은 이겁니다.
멋집니다. 역시 교육청이네요.
(반어법은 아닙니다ㅋ)
그런데, 오프라인 해설을 하다보니 저 해설자체를 매우매우매우매우 싫어하더라고요.
그리고, 저렇게 풀이를 했는데, 어디선가 계산이 틀려서 오답이 난 친구들도 꽤나
있었습니다.
뭐 근데, 이미 잘하시는 분들은 이렇게 푸셨겠지만,
3,4차 함수의 다항함수 미적분 문제는 꽤 높은 비율로, 그래프를 활용할수 있습니다.
(가)(나) 조건에서
f(x)는 최고차계수가 1인 4차함수, (1,1)을 지나고 그 점에서의 접선의 기울기가 1이네요.
그렇다면, 다음 그림을 예상할 수 있습니다.
물론, 다른방식으로 접할수도 있는데요. 조금만 더 생각해보면 아님을 알 수 있죠.
이유는,
이 조건 때문입니다. 이 조건해석도 조금만 생각하면 되는데,
n=0을 대입하면 g(x)=f(x) (0≤x<1) 이지요?
n=1을 대입하면, g(x)=f(x-1)+1 (1≤x<2)가 되고, 결국 그래프를
x방향으로 1, y방향으로 1만큼 평행이동 한다는 이야기입니다.
그렇다면, (1,1)에서 일어난 상황이 (2,2)에서도 일어나야 하고,
결국 (0,0)에서의 상황이 (1,1)에서 일어나는 것이 됩니다.
그래야,
라는 조건에 부합하게 됩니다.(결국 직선에 접한다는 이야기)
그러면 자연스럽게 이러한 그래프가 나오게 됩니다.
결국, (-1,5)의 구간에서 이런식으로 그려진다는 이야기가 되고,
주어진 적분은
이렇게 됩니다.(1+2+3은 아래 정사각형넓이)
그러면 0≤x<1 구간에서의 함수를 구하면, (0,0), (1,1)에서 y=x와 접하므로,
답은 137입니다.
그런데, 이렇게 해설을 하는 와중에,
‘이거 뭔가 어디서 본듯한 문제인데?’
‘이거랑 같은 그래프를 그린적이 있었던 것 같은데??‘
그렇습니다. 이 문제입니다. (헉 3년전 문제)
[2013 이해원모의 2회 21번]
기본적으로 같은 구조의 문제이고,
ㄷ 보기에서 다른내용을 공부할 수 있는, 좋은 문제입니다~
(해설은 다음주 오픈하는 7월교육청 해설강의 나형 3강에서 합니다~)
포모나 해모에서는 이런일이 꽤 자주 일어납니다.
이제는 뭐 그닥 놀랍지도 않네요.
역시, 믿고푸는 해모^^ 올해도 꼭 풀고 갑시다!!
---------------------------------------------------------
위의 그래프는 사실 많이 왜곡된, 제가 그냥 그린 그래프고요^^
댓글에 써 주셨듯,
실제그래프는 이렇게 그려집니다. (0≤x<1)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
언매, 미적의 메가스터디 채점자 평균치의 상대점수는 대략 비례하는 경향이 있음. 내...
-
저를 찾아주세요
-
그냥 따라하기만 함
-
어디가 더 좋을까요? (참고. 한양대 전기는 전자공학이 아님)
-
얼버기 2
죠은 아침
-
ㅈㄱㄴ
-
새벽감성노래 1
이미새벽은지나갔지만
-
뭔가 위에 대학 이름이랑 같이 붙어있으면 너무 위에 쏠려있는 느낌서울대나 경희대처럼...
-
기상 완료 알바 가기 시러
-
진짜 인재 놓친거다.
-
오르비 망했나
-
이번수능 대충 언미영사문생1 23212 받았습니다 순수과학에 흥미가 생기기도했고,...
-
갈드컵 안열리네 예전에 이거갖고 말 엄청 많았던걸로 기억하는데
-
경북대 치대 논술 가야할까요??ㅠㅠ 지금 6칸입니다ㅠㅠ
-
삼반수 할까 2
작수 55332 올해 33231 흠
-
내신 대비로 어떤 문제집이 괜찮은가요???
-
어느길로갈까요 7
젤 무서운 길을 8분 정도 걸리고 가로등 없음... 다른 길은 15분에 가로등 몇개...
-
재수는 싫고 반수하면 놀다가 제대로 못할거같고 남은건 군수뿐인거같은데
-
집이드 편의점최고
-
문제집 분리수거 2
이번 수험기간동안 푼 문제집들 다 종이 버리는곳에 버리면 될까요? 스프링은 없어요
-
치감걸린듯 4
왜 힐이안되냐
-
기적의 수면패턴 3
8시수면 4시반기상 ㅋㅋ
-
알바 헬스 대학공부
-
처음부터 마지막까지 네 맘을 알고 싶은걸
-
반갑습니다. 10
-
아낌없이주는나무는이제없다..
-
전시즌 플레계정인데 랜만에 켜서 한판해서 첫판 이겼더니 실버 4를 주네
-
벌써 2028 수능 준비하는 사람 있음? 아는 08 지금 자퇴하고 2028 수능 준비하는데
-
이번 겨울부터 시대 라이브반 수강하려고하는데 언제쯤 개강하나요??
-
나도 그때까진 생지가 무슨 이과냐고 생각하면서 이과가 물화중 하나도 안 하는게...
-
방금 라면먹고 3
식은 밥말아먹는 중인데 살안찌겠죠? 오늘 아침안먹었고 점심 저녁만먹음 점심엔 떡볶이...
-
행렬 공간벡터 모비율의 추정 롤백시킨건 근본스러운데 3
행렬은 공통수학1에 있어서 간접 연계로 들어가는데 수학적 귀류법이나 순열처럼...
-
언 미 영 물1 지1 동대나 홍익대 공대는 가능할까요...?
-
지각안할라면넉넉히 6시50엔 일어나야하는데 ㅅㅂ오늘 ㅈㄴ쳐잣더니 잠안옴..ㅈ댬
-
기숙학원재수는 1년6개월동안 공부해야하고 기간동안 수능을 볼 수 없으며...
-
위치 신경안쓰고 학교 지원이나 아웃풋 측면에서만 ㅇㅇ 입시 커뮤 말고는 어떤 기준으로 알아봐야됨?
-
ㅏ 드디어 1
올 한해를 알차게 보내기 위한 인강 커리 N제들 계획을 다 세웠다 이대로만...
-
세종대 논술 0
보통 수학 몇등급대가 오나여? 미적 안한 기하러 합격 가능세계잇음?
-
07들에게 힘의 차이를 보여주기 위해
-
.
-
이새끼들 안죽냐 변기물로 익사시킴
-
긴장되네요.. 0
인생이 바뀌는 시험이라 그런지
-
올인원, 단어, 유형독해만 듣고 빈순삽은 교재없이 강의만 들어도 되나요? 목표는 2등급 이상입니다.
-
ㅈㄱㄴ 실모에요 N제에요?
-
이번에 보니까 호텔관광이랑 묶어서 계열로 뽑던데 2학기끝나고 전공 선택할때...
-
음..
-
의치한은 진짜 그런가요
-
계정은 남겨 두겠음
-
우울글 3
(반말주의) 사실 나는 의대가 너무 가고싶었다. 아니, 의사가 되고 싶었다는 말이...
-
은 없나여?
딱봐도 (0,1) 적분값이 8/15안나오는데 그래프 모양 잘못구하신듯 ^^
제가 맘대로 그려서 그래요^^
진짜 그래프 개형도 올려놓았습니다~
꼼꼼한 지적 감사해요~
ㅋㅋ 전 이문제 보자마자 15 수b30번 생각났는데...
사실 이과는 생각나는 문제가 많이 있을수 밖에 없어요ㅋ
그런데 제르맹님 레벨 26 부럽네요^^
ㅋㅋㅋ15 수b 6평이라고 쓸려그랬는데 빼먹었었네요. 글 잘보고갑니다. 저 27갔다가 돌아왔어요.... ㅠㅠ
ㅋㅋㅋ 레벨이 오르락 내리락 해요? 몰랐는데ㅋ
저도 몰라요 ㅠㅠ
우와 그냥 식으로만 풀엇는데 그래프로도 풀 수 있다니 ㄷㄷ 좋은거 배워가요 ㅎㅎ
시간단축에 도움이 됩니다^^
선생님 안녕하세요^^ 그래프풀이에 질문이 있어 덧글남깁니다~
사실 문제를 한번 더 검토할 때는 그래프 풀이가 직관적이고 엄밀하지 못하다 생각하여 f (x)-x가 1에서 접하는 정도만 식으로 두고 나머지 x^2+ax+b는 미분가능성의 정의와 거기서 기인되는 연속성 성질을 가지고 미정계수를 소거하는 방식으로 정리해 뒀는데요, 그래프 풀이도 엄밀성은 있는지 궁금합니다.
사실 문과기준 많은 다항함수 미분가능성 문제가 그래프가 꿀인 부분이 있긴 하지만...ㅋㅋ그래도 포카칩 정신을 살려 최대한 엄밀해져보려고 노력중...ㅠㅠ 답변부탁드려요~
괜찮으시다면 한가지 더 여쭤봐도될까요? 가능하시다 하시면 답글로 하나 더 여쭤볼께요~
네, 그런 생각이시라면 잘 하셨습니다^^
포카칩정신은 영원하죠! ~
약간 덧붙이자면, 3,4차 함수의 그래프는 경우의수가 매우 제한적이기 때문에,
문제에서 주어진 상황을 가지고 소거법으로 접근하면 하나만 남는 경우가 대부분
입니다.(이 문제도 그렇고요)
제가 올린 풀이는 답을 바로 찾아 들어갔지만,
실제로 제가 풀때는 접하는 상황을 모두 그려보고 평행이동해서 미분가능한
개형을 찾아서 푼 것입니다. 이렇게 하시면 엄밀함이 모두 해결되는것은 아니지만,
문제를 풀때 오류는 생기지 않게 됩니다.
문제의 상황에 떄라서, 그래프의 소거가 안되는 부분도 있습니다.
기출에서도 있었고요, 이런 상황이라면 그래프 접근보다 수식의 접근이
맞는 풀이입니다.
교육청해설은 이런 측면에서 수식풀이를 잘 써 준거라고 보고요,
그런데 3,4차 미적분 문제를 풀다보면 그래프가 떠오르는 경우가 많기 때문에,
그래프 풀이도 보여드린 것 입니다~
감사합니다!! 아주 명쾌하네요ㅋㅋ
질문드린다는것은 조금 별개의 내용이긴 한데요, 다른 건 아니고재수생이라 올해 새로 들어온 부분에서 논리전개가 막히는 순간들이 있습니다. 특히 평균값정리가 그런데요, 이게 그냥 문제과정중에 쓰일때는 자연스럽게 증명과정중 쓰면서 넘어가게되는데 유형별로 나눠놓은(평균값정리 연습을 위한 문제들)에서는 또 확 와닿지 않는 부분도 있고...어떻게 해야할지 잘 모르겠네요...평균값정리! 어떻게해야할까요..ㅠㅠ 기출로 곱씹어보려하는데 어떤 문제가 있는지도 모르겠네요(어쩌면 15 수b 6 30번 말고는 문과범위 문제가 없을지도...)조금의 조언이라도 부탁드려요 흑...
우선 제가 생각하는 평균값정리가 나형에서 출제될수 있는 유형은 ㄱㄴㄷ문제라고 보고요, 그렇지 않은 킬러문제의 풀이도구로써 사용될 확률은 낮다고 생각합니다.(개인적의견입니다)
그래서 '해석'의 의미로 평균변화율이 나올때, 평균값정리를 같이 떠올려보는것이 좋은 방법이고요, 식변형 중에서도 평균변화율 형태가 나오면 평균값정리를 상각해보시는게 좋을것 같습니다.
올해 처음들어온 거라서,그렇게 크게 걱정은 안하셔도 될 것 같네요~
감사합니다!^^더운 날씨 건강 잘챙기셔요
예전 실모들은 어떻게 구매할수있나요ㅠㅜ
옛날 포모 해모 좋은문제들 풀어보고싶은데
곧 포카칩 N제가 배포됩니다.
올해 해모도 좋은데요^^
8/15 x 4 해서 틀렸어요...좋은 해설 감사합니다
수능에서 나오면 실수 인하시겠네요~^^ 좋은 경험 하셨습니다~
시험때 그래프로 풀어보겠다고 했다가 피를 본 1인.. 많이 노력해야겠어요 ㅋㅋ
아직 시간은 많이 있어요! 연습하면 됩니다~^^
결국은 해모 홍본가여??ㅋㅋㅋ
칼럼입니......쿨럭
와 두번째 풀이 ㄷㄷ
익혀두면 쓸모가 있지요~^^
30맞았는데 14틀림
ㅠㅜ
. .ㅜㅜ
수능에선 맞추자고요^^
와 이렇게 세련된 풀이 개좋음ㅎㅎ
감사합니다~^^
좋은 해설 감사합니다! 제풀이와 완전 똑같은데, 덕분에 확신을 갖게 되었네요^^
참고로 작년 사관학교 기출 A형 17번 문항과도 비슷합니다. 이것보단 쉽지만요..ㅎㅎ
17. 실수 전체의 집합에서 연속인 함수 f(x)가 다음 조건을 만족시킨다.
(가) f(x)=ax^2 (0≤x<2)
(나) 모든 실수 x에 대하여 f(x+2)=f(x)+2이다.
∫1to7 f(x)dx의 값은? (단, a는 상수이다)
네^^ 맞습니다~ 잘하셨네요~
박샘 열심히 연구 하시는 모습 응원합니다.
파이팅요!! ^^
감사해요~
교육청 풀이랑 글씨 한톨 안다르고 똑같이 풀었는데.. 배워갑니다 고마워요
교육청해설처럼 하셨어도 잘하셨습니다^^ 하나 더 알아가는 거죠~
교육청대로 풀었는데 두번째 방법을 떠올리지못했다는건 실력부족이겠죠..??
실력부족은 아니고요^^ 잘하셨습니다~ 그런데 조금 더 공부해두자는 의미로 올렸습니다~