제로콜라 [408120] · MS 2017 · 쪽지

2022-05-23 21:33:14
조회수 1,407

수특에서 배울거리를 정리해보자 수2 14일차

게시글 주소: https://w.orbi.kr/00056801091


아래는 오늘 문제인 수특 수2 42p Level3 3번입니다.

먼저 풀어보시고 아래 내용 봐주세요. 




오늘 문제 보기 전에 관련 내용 정리 간단히 할게요. 

함수 f(x)가 미분가능한 함수일 때 |f(x)|가 미분가능하기 위한 조건을 생각해봅시다.

f(x)가 x축과 만나지 않는다면 |f(x)|는 f(x)와 완전히 같으므로(또는 -f(x)와 완전히 같으므로) 그대로 미분가능합니다.

f(x)가 x축과 만날 때는 |f(x)| 그래프는 x축 기준으로 접어올리는 것인데 접어올릴 때 뾰족한 점이 생기며 미분이 가능하지 않을 수 있습니다.

f(x)가 x=a에서 x축과 만난다고하면 f(a)=0이겠죠. 이때 f'(a)=0임을 두가지로 설명해볼게요. 

① 직관적으로 f'(a)=m이였다면 x=a에서 접어올릴 때 x=a 좌우에서 기울기가 ±m이 되며 뾰족한 점이 되는데 뾰족하지 않으려면 f'(a)=0이였어야 합니다.

② f(x)가 다항함수인 경우에 미분계수 정의로 설명해보면, f(a)=0이면 f(x)=(x-a)g(x)라 할 수 있고 

|f(x)|의 평균변화율은 |f(x)-f(a)|/(x-a) = |x-a||g(x)|/(x-a) 입니다.

x→a+일 때 순간변화율은 |x-a|=x-a이므로 |g(a)|이고

x→a- 일 때 순간변화율은 |x-a|=-(x-a)이므로 -|g(a)|입니다. 이 값이 서로 같아야하므로 g(a)=0이고

f(x)는 (x-a) 인수가 두개 이상이 되어 f'(a)=0이 되죠. 



이제 오늘 문제를 볼게요.

일단 (가) 조건에서 f(x)는 기울기 2인 직선이므로 f(x)=2x+k라 할 수 있습니다.

(나) 조건에 의해 f(1)=g(1)=3 이므로 k=1이고 f(x)=2x+1이죠.

이제 h(x)=f(x)-g(x)라 하면 h(x)는 최고차항의 계수가 -1인 삼차함수고이고 

(다)에서 |h(x)|가 실수 전체에서 미분가능합니다.

h(1)=0이므로 x=1은 h(x)=0의 실근입니다. 

위 내용에 의해 (x-1) 인수가 두개 이상, 다르게 표현하면 h'(1)=0, 또 다르게 표현하면 1가 중근이 됩니다.

1과 다른 실근 p가 존재하여 h(p)=0이 된다면 p도 중근이여야 하는데 삼차식이라는 조건에 모순입니다.

( (x-1) 인수가 두개 이상, (x-p) 인수가 두개 이상이 되면 4차 이상이 되겠죠)

따라서 1이 아닌 실근 p는 없고 1만 실근이 되어 삼중근이 됩니다.

이때 h(x)는 최고차항의 계수가 -1인 삼차함수였으므로 h(x)=f(x)-g(x)=-(x-1)³이 됩니다.

f(x)=2x+1이므로 f(3)=7이고 h(3)=f(3)-g(3)=-8이므로 g(3)=15입니다.

따라서 f(3)+g(3)=22가 되죠. 



아래는 관련 기출인 2022학년도 6월 평가원 14번입니다.

봐주셔서 감사하고요

도움이 되셨다면 좋아요, 팔로우, 댓글 남겨주시면 큰 힘이 됩니다. 


[수특 수1에서 배울거리를 정리해보자]

1일차 https://orbi.kr/00043586953

2일차 https://orbi.kr/00054486743

3일차 https://orbi.kr/00054486856

4일차 https://orbi.kr/00054486909

5일차 https://orbi.kr/00054486964

6일차 https://orbi.kr/00054755049

7일차 https://orbi.kr/00055606627

8일차 https://orbi.kr/00055606695

9일차 https://orbi.kr/00055934554

10일차 https://orbi.kr/00056038091

11일차 https://orbi.kr/00056055480

12일차 https://orbi.kr/00056076859

13일차 https://orbi.kr/00056087931

14일차 https://orbi.kr/00056209161

15일차 https://orbi.kr/00056218374

16일차 https://orbi.kr/00056245358

17일차 https://orbi.kr/00056255150

18일차 https://orbi.kr/00056285424

19일차 https://orbi.kr/00056297739

20일차 https://orbi.kr/00056317870

21일차 https://orbi.kr/00056329144

22일차 https://orbi.kr/00056353975

23일차 https://orbi.kr/00056365299

24일차 https://orbi.kr/00056383119

25일차 https://orbi.kr/00056395643

26일차 https://orbi.kr/00056415172

27일차 https://orbi.kr/00056425159

28일차 https://orbi.kr/00056446414

29일차 https://orbi.kr/00056485619

30일차 https://orbi.kr/00056500731

31일차 https://orbi.kr/00056515335


[수특 수2에서 배울거리를 정리해보자]

1일차 https://orbi.kr/00056604978

2일차 https://orbi.kr/00056619232

3일차 https://orbi.kr/00056634162

4일차 https://orbi.kr/00056647537

5일차 https://orbi.kr/00056661437

6일차 https://orbi.kr/00056683179

7일차 https://orbi.kr/00056698712

8일차 https://orbi.kr/00056711910

9일차 https://orbi.kr/00056726584

10일차 https://orbi.kr/00056740434

11일차 https://orbi.kr/00056755830

12일차 https://orbi.kr/00056772290

13일차 https://orbi.kr/00056785592

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.